Abstract:
A method, apparatus and computer program product are provided for generating map data based on construction designs. In the context of a method, the method includes receiving a construction design, performing optical character recognition to detect characters within the construction design, extracting design features within the construction design, and generating map data based on the detected characters, and the extracted design features.
Abstract:
Systems/apparatuses and methods are provided for creating aerial images. A three-dimensional point cloud image is generated from an optical distancing system. Additionally, at least one two-dimensional street level image is generated from at least one camera. The three-dimensional point cloud image is colorized with the at least one two-dimensional street level image, thereby forming a colorized three-dimensional point cloud image. The colorized three-dimensional point cloud image is projected onto a two-dimensional plane, using a processor, thereby forming a synthetic aerial image.
Abstract:
A method and apparatus for rendering geographic areas involves presenting at least part of the geographic area in a distinctive fashion. An area of interest is identified. A location of the area of interest as a geographic sub-area within a geographic area is determined. A representation of the area of interest within an electronic model of the geographic area is located. A view of the electronic model of the geographic area comprising the representation of the area of interest is selected, and the view of the electronic model with the area of interest having a different display characteristic than other geographic sub-areas shown in the view is presented. The different display characteristic distinguishes the area of interest from the other geographic sub-areas.
Abstract:
Methods, apparatuses, and systems are provided for detecting overhead obstructions along a path segment. One exemplary method includes receiving three-dimensional data collected by a depth sensing device traveling along a path segment, wherein the three-dimensional data comprises point cloud data positioned above a ground plane of the path segment. The method further includes identifying data points of the point cloud data positioned within a corridor positioned above the ground plane. The method further includes projecting the identified data points onto a plane. The method further includes detecting the overhead obstruction based on a concentration of point cloud data positioned within a plurality of cells of the plane. The method further includes storing the detected overhead obstruction above the path segment within a map database.
Abstract:
Embodiments include apparatus and methods for automatic generation of local window-based 2D occupancy grids that represent roadside objects at a region of a roadway and automatic localization based on the 2D occupancy grids. 2D occupancy grids are generated based on an altitude threshold for point cloud data and grid cell occupancy for grid cells of local windows associated with the region of the roadway. The 2D occupancy grids are stored in a database and associated with the region of the roadway. Sensor data from a user located at the region of the roadway is received. The accessed 2D occupancy grids and the received sensor data are compared. Based on the comparison, localization of the user located at the region of the roadway is performed.
Abstract:
The present embodiments provide for automatically detecting the location and severity of occluded regions within input data. A grid representation of a scene is generated from a data set, characterizing spaces of the grid representation as free, occupied, and hidden/occluded. The grid is bounded, and a connected component analysis is performed on the hidden space to identify the occluded regions.
Abstract:
An approach is provided for providing a digital elevation model. For example, the approach involves processing, by a processor, map elevation data to create a hierarchical resolution tile representation of the digital elevation model for a geographic area. The hierarchical resolution tile representation includes a plurality of resolution levels, wherein each of the plurality of levels represents the digital elevation model at a different resolution. The digital elevation model includes a plurality of control points, wherein each of the plurality of control points is associated with an elevation data point determined from the map elevation data.
Abstract:
Improved mechanisms for three-dimensional image reconstruction are disclosed. A user is presented with a scene image and allowed to select elements of the image, such as planes, within which features are to be detected. The features are detected and tracked and objects (such as planes) are constructed. The user is allowed to revise the constructed objects and may be allowed to repeat image element selection, with feature detection and tracking and object construction being repeated. When element selection and object construction and user revision are completed, a three-dimensional reconstruction of the scene image is computed.
Abstract:
Systems, methods, and apparatuses are disclosed for determining lane information of a roadway segment from vehicle probe data. Probe data is received from vehicle camera sensors at a road segment, wherein the probe data includes lane marking data on the road segment. Lane markings are identified, to the extent present, for the left and right boundaries of the lane of travel as well as the adjacent lane boundaries to the left and right of the lane of travel. The identified lane markings are coded, wherein solid lane lines, dashed lane lines, and unidentified or non-existing lane lines are differentiated. The coded lane markings are compiled in a database. A number of lanes are predicted at the road segment from the database of coded lane markings.
Abstract:
Embodiments include apparatus and methods for generating a localization geometry or occupancy grid for a geographic location. Point cloud that describes a vicinity of a pathway is collected by a distance sensor and describing a vicinity of the pathway. The point cloud data is reduced or filtered to a predetermined volume with respect to the roadway. The remaining point cloud data is projected onto a two-dimensional plane including at least one pixel formation. A volumetric grid is defined according to the at least one pixel formation, and a voxel occupancy for each of a voxels forming the volumetric grid is determined. The arrangement of the voxel occupancies or a sequence of data describing the voxel occupancies is a localization geometry that describes the geographic location of the pathway.