Abstract:
Embodiments of the present invention provide a data transmission method and an apparatus, and relate to the field of communications technologies. The method includes: obtaining, by a terminal, first indication information of an uplink resource used for sending uplink data or uplink control information. The first indication information of the uplink resource includes information used to indicate whether the uplink resource is a type 1 uplink resource or a type 2 uplink resource. The type 1 uplink resource includes at least one subcarrier in a frequency domain, where when a subcarrier quantity of subcarriers is greater than or equal to 2, the subcarriers are orthogonal to each other, and a subcarrier spacing is 3.75 kHz; or the type 1 uplink resource includes at least one sub-channel in a frequency domain, where a bandwith of each sub-channel is approximately 3.75 kHz.
Abstract:
Embodiments of the present invention provide a data transmission method and an apparatus, and relate to the field of communications technologies. The method includes: obtaining, by a terminal, first indication information of an uplink resource used for sending uplink data or uplink control information. The first indication information of the uplink resource includes information used to indicate whether the uplink resource is a type 1 uplink resource or a type 2 uplink resource. The type 1 uplink resource includes at least one subcarrier in a frequency domain, where when a subcarrier quantity of subcarriers is greater than or equal to 2, the subcarriers are orthogonal to each other, and a subcarrier spacing is 3.75 kHz; or the type 1 uplink resource includes at least one sub-channel in a frequency domain, where a bandwith of each sub-channel is approximately 3.75 kHz.
Abstract:
Embodiments of the present invention provide a physical downlink control channel transmission method and apparatus. The transmission method includes: obtaining, by UE, a parameter set for transmitting a first physical downlink control channel, where the first physical downlink control channel is used for sending same downlink control information DCI in at least R subframes; determining, by the UE according to the parameter set, N candidate locations for transmitting the first physical downlink control channel by a base station, where the candidate location includes the R subframes; monitoring, by the UE at the N candidate locations, whether the base station sends the first physical downlink control channel; and receiving, by the UE at a first candidate location, the first physical downlink control channel sent by the base station, where the N candidate locations include the first candidate location.
Abstract:
The present application discloses a control information sending method that includes: determining, by the user equipment, a first pattern from a preset set of patterns, wherein the pattern corresponds to an aggregation level for control information in each subframe of multiple subframes, and/or a resource indicator for a resource that is used for the control information in each subframe of the multiple subframes; and acquiring, by the user equipment, the control information mapped on the resource in each subframe of the multiple subframes according to the first pattern.
Abstract:
A method for determining a transmit power in a coverage enhancement scenario and a device resolve a problem that the prior art lacks a solution to determining a transmit power of a preamble sequence in a random access process in the coverage enhancement scenario. The method includes: obtaining, by a terminal, configuration information that is used to determine a transmit power used for transmitting a signal at each coverage enhancement level; and determining, by the terminal according to the obtained configuration information, a transmit power used for transmitting the signal at a coverage enhancement level currently used by the terminal, so as to determine the transmit power used for transmitting the signal in the coverage enhancement scenario.
Abstract:
A transmitter, configured to send system information to a terminal, where the system information is used for indicating to the terminal whether a cell covered by the base station supports coverage enhancement, and the system information includes a master information block MIB and/or a system information block SIB. According to the base station provided in an embodiment of the present invention, a transmitter sends, to a terminal, system information used for indicating whether a cell covered by the base station supports coverage enhancement, so that the terminal can accurately learn whether the cell supports communication in a coverage enhancement mode, and the terminal is notified in a timely manner when the cell does not support communication in the coverage enhancement mode, which avoids blind access of the terminal and reduces power consumption of the terminal.
Abstract:
The present invention provides a method for transmitting common information, a base station, and user equipment, where the method includes: generating additional information according the common information, where the common information is a paging message and/or system information, and data packets of the additional information and data packets of the common information are the same at a Media Access Control MAC layer; and sending the common information and the additional information to the user equipment. In embodiments of the present invention, because the additional information and the common information carry same MAC layer data packet content, in a case of receiving the common information and the additional information, the user equipment may determine a data packet at the MAC layer according to the common information and the additional information; therefore a probability of correct detection of the common information may be increased.
Abstract:
The present invention relates to the field of communications technologies, and discloses methods for transmitting and storing downlink data, a base station, and a terminal. In this solution, each time when a base station transmits downlink data, bits are selected in such a way that a length and a start point of a sequence that a terminal of any terminal category expects to receive in initial transmission (or retransmission) of a code block are the same as a length and a start point of a sequence that a transmit end determines to transmit for the same code block, so that the terminal can perform reliable decoding. Therefore, a disadvantage is avoided that the terminal cannot correctly perform storing and further cannot correctly perform decoding each time when the terminal stores a retransmitted code block for a same code block, and decoding accuracy of the terminal is improved.
Abstract:
The present invention relates to the field of communications, and in particular, to a method for configuring a physical random access channel (PRACH) resource, a method for acquiring a PRACH resource configuration, a base station, and user equipment. The method for configuring a resource includes configuring, by a base station, a supported coverage enhancement level and a PRACH resource corresponding to the coverage enhancement level, and transmitting, by the base station to user equipment, a resource index and/or resource configuration information of the PRACH resource configured for the coverage enhancement level, so that the user equipment acquires the corresponding PRACH resource, and transmits a preamble on the acquired PRACH resource.
Abstract:
A transmitter, configured to send system information to a terminal, where the system information is used for indicating to the terminal whether a cell covered by the base station supports coverage enhancement, and the system information includes a master information block MIB and/or a system information block SIB. According to the base station provided in an embodiment of the present invention, a transmitter sends, to a terminal, system information used for indicating whether a cell covered by the base station supports coverage enhancement, so that the terminal can accurately learn whether the cell supports communication in a coverage enhancement mode, and the terminal is notified in a timely manner when the cell does not support communication in the coverage enhancement mode, which avoids blind access of the terminal and reduces power consumption of the terminal.