Abstract:
A card edge connector for mounting on a circuit board and removeably receiving a circuit card includes an elongated housing defining a card receiving slot. Numerous terminal receiving cavities intersect and extend to both sides of the slot. Alternate cavities include stamped reference (ground or power) terminals and signal terminals, all having downwardly extending board contacts and upwardly extending spring arms. There are numerous similar sets of face to face contacts, each including a reference contact parallel to and substantially overlying an opposed pair of signal contacts. The upwardly extending reference terminal spring arms include oversize pad portions for reducing crosstalk by increasing coupling between the reference and signal terminals. The circuit paths to the circuit board are in an array symmetrical about the centerline of the circuit card, with parallel inner lines of circuits containing only reference contacts and outer lines of circuits containing only signal contacts.
Abstract:
A card edge connector for mounting on a circuit board and removeably receiving a circuit card includes an elongated housing defining a card receiving slot. Numerous terminal receiving cavities intersect and extend to both sides of the slot. Alternate cavities include stamped reference (ground or power) terminals and signal terminals, all having downwardly extending board contacts and upwardly extending spring arms. There are numerous similar sets of face to face contacts, each including a reference contact parallel to and substantially overlying an opposed pair of signal contacts. The upwardly extending reference terminal spring arms include oversize pad portions for reducing crosstalk by increasing coupling between the reference and signal terminals. The circuit paths to the circuit board are in an array symmetrical about the centerline of the circuit card, with parallel inner lines of circuits containing only reference contacts and outer lines of circuits containing only signal contacts.
Abstract:
An connector assembly is provided that may be utilized for vertical applications on a circuit board. The assembly includes a housing that supports a plurality of wafers that in tern support a plurality of terminals. The housing includes a base and a nose and can have two slots in the nose and the terminals extend to both slots. A guide frame can be positioned on the housing to help support the housing. The terminals can be arranged in a row on both sides of the two slots. The tails of the terminals can be configured with respect to the slots so as to provide desirable performance.
Abstract:
A shield for a connector that can provide a card-receiving slot is disclosed. The shield includes sides that provide an enclosure. The shield includes a fastener that is held in place by a retaining notch in a bottom of the shield. The retaining notch is configured to support the fastener in place and restrain it from unintended translation or rotation.
Abstract:
A connector subassembly is provided that may be utilized for both internal and external applications. The subassembly includes a housing that supports a plurality of wafers with terminals. The housing includes engagement members to secure the housing to either the shield or the guide frame. The engagement members can include an angled portion that allow the housing to form a dovetail joint with the guide frame and/or a multi-faceted portion to engage a fastener.
Abstract:
A connector utilizes a latching assembly that has a structure that connects horizontal movement of an actuator to vertical movement of a latching arm. A latching member is provided that grips the exterior of the connector and has a cantilevered latching arm that extends from the member over a mating portion for connection. In its simplest form the latching member includes a continuous retaining collar that fits over the exterior of the connector and exerts a clamping force on the connector so as to retain the latching member in place.
Abstract:
A connector of horizontal construction includes at least a pair of first and second halves that are mated together along a common mating line. A plurality of mating blades are supported in a vertical arrangement within a mating portion of the connector. The connector includes two distinct fasteners for holding the housing halves together. A fastener can be provided as a horizontal attachment member that extends widthwise in the mating portion in a space between the circuit cards. A second fastener can be provided as an exterior retainer that engages at least part of the outer circumference, or perimeter of the connector.
Abstract:
A connector of horizontal construction includes at least a pair of first and second halves that are mated together along a common mating line. A plurality of mating blades are supported in a vertical arrangement within a mating portion of the connector. The connector includes two distinct fastenings means for holding the housing halves together. A first fastening means is provided as a horizontal attachment member that extends widthwise in the mating portion in a space between the circuit cards. A second fastening means is provided as an exterior retainer that engages at least part of the outer circumference, or perimeter of the connector.
Abstract:
A connector utilizes a latching assembly that has a structure that connects horizontal movement of an actuator to vertical movement of a latching arm. A latching member is provided that grips the exterior of the connector and has a cantilevered latching arm that extends from the member over a mating portion for connection. In its simplest form the latching member includes a continuous retaining collar that fits over the exterior of the connector and exerts a clamping force on the connector so as to retain the latching member in place.
Abstract:
An connector assembly is provided that may be utilized for vertical applications on a circuit board. The assembly includes a housing that supports a plurality of wafers that in tern support a plurality of terminals. The housing includes a base and a nose and can have two slots in the nose and the terminals extend to both slots. A guide frame can be positioned on the housing to help support the housing. The terminals can be arranged in a row on both sides of the two slots. The tails of the terminals can be configured with respect to the slots so as to provide desirable performance.