摘要:
Transmission patterns for pilot symbols transmitted from a mobile station or base station are provided. The pattern allows for improved receipt of the pilot symbols transmitted. In addition, schemes for improving the ability to multiplex pilot symbols without interference and/or biasing from different mobile stations over the same frequencies and in the same time slots.
摘要:
Estimation of channel characteristics and interference level in a time-varying multi-carrier multi-user systems is carried out concurrently. To perform the estimation, a multitude of data symbols and dedicated pilot symbols are transmitted over the channel. The estimate of the interference level is used to estimate the channel parameters.
摘要:
Apparatuses and methodologies are described that increase system capacity in a multi-access wireless communication system. Spatial dimensions may be utilized to distinguish between multiple signals utilizing the same channel and thereby increase system capacity. Signals may be separated by applying beamforming weights based upon the spatial signature of the user device-base station pair. Grouping spatially orthogonal or disparate user devices on the same channel facilitates separation of signals and maximization of user device throughput performance. User devices may be reassigned to groups periodically or based upon changes in the spatial relationships between the user devices and the base station.
摘要:
Techniques for controlling transmit power and the amount of overlapping in a quasi-orthogonal system are described. A base station for a sector receives transmissions from terminals in that sector and neighbor sectors and determines performance metrics (e.g., overall throughput) and/or QoS metrics (e.g., minimum data rate) for the terminals in the sector. The base station updates an overlapping factor based on the performance metrics and updates a QoS power control parameter based on the QoS metrics. The overlapping factor indicates the average number of overlapping transmissions sent simultaneously on each time-frequency block usable for data transmission. The QoS power control parameter ensures that the terminals in the sector can achieve minimum QoS requirements. A power control mechanism with multiple loops is used to adjust the transmit power of each terminal. The overlapping factor and QoS power control parameter are updated by two of the loops.
摘要:
A channel estimation system comprises a filtering component that selectively scales a plurality of carriers as a function of location of the plurality of carriers within a frequency band, wherein the plurality of carriers comprises at least one data carrier and at least one pilot carrier. A component thereafter extrapolates an observation from the at least one pilot carrier, wherein a channel is estimated as a function of the extrapolated observation. The scaling of the carriers facilitates reducing a flooring effect associated with channel estimation. The filtering component can be employed at a transmitter and/or at a receiver, and can be activated and/or deactivated as a function of a sensed data packet type.
摘要:
To receive packets with interference cancellation, block transmissions for the packets are received on time-frequency blocks used by these packets. Receiver spatial processing is performed on input symbols to obtain detected symbols. Each packet is demodulated and decoded based on all detected symbols obtained for all block transmissions received for the packet. For each packet that is decoded correctly, the transmission for the packet is terminated, the interference due to the packet is estimated, and the estimated interference is subtracted from the input symbols for all time-frequency blocks used by the packet. Receiver spatial processing is performed on the interference-canceled symbols to obtain new detected symbols for all time-frequency blocks used by all correctly decoded packets. Each packet decoded in error and overlapping at least partially with any correctly decoded packet may be demodulated and decoded based on all detected symbols available for that packet.
摘要:
Techniques for controlling transmit power and the amount of overlapping in a quasi-orthogonal system are described. A base station for a sector receives transmissions from terminals in that sector and neighbor sectors and determines performance metrics (e.g., overall throughput) and/or QoS metrics (e.g., minimum data rate) for the terminals in the sector. The base station updates an overlapping factor based on the performance metrics and updates a QoS power control parameter based on the QoS metrics. The overlapping factor indicates the average number of overlapping transmissions sent simultaneously on each time-frequency block usable for data transmission. The QoS power control parameter ensures that the terminals in the sector can achieve minimum QoS requirements. A power control mechanism with multiple loops is used to adjust the transmit power of each terminal. The overlapping factor and QoS power control parameter are updated by two of the loops.
摘要:
A shared signaling channel can be used in an Orthogonal Frequency Division Multiple Access (OFDMA) communication system to provide signaling, acknowledgement, and power control messages to access terminals within the system. The shared signaling channel can be assigned to a predetermined number of sub-carriers within any frame. The assignment of a predetermined number of sub-carriers to the shared signaling channel establishes a fixed bandwidth overhead for the channel. The actual sub-carriers assigned to the channel can be varied periodically, and can vary according to a predetermined frequency hopping schedule. The amount of signal power allocated to the signaling channel can vary on a per symbol basis depending on the power requirements of the communication link. The shared signaling channel can direct each message carried on the channel to one or more access terminals. Unicast messages allow the channel power to be controlled per the needs of individual communication links.
摘要:
Systems and methodologies are described that facilitate increasing system capacity in a code-limited WCDMA (e.g., TDD, FDD, . . . ) wireless communication environment. According to one aspect, a larger code space can be defined by introducing multiple code clusters within a sector, wherein each cluster has a unique scrambling code. Codes within a cluster can have orthogonal Walsh sequences that can be assigned to user devices to facilitate communicating over a wireless network and can overlap with codes in another cluster. The unique scrambling code assigned to each cluster can ensure that duplicate Walsh sequences in another cluster in the same sector appear as a pseudo-noise codes.
摘要:
A channel structure has at least two channel sets. Each channel set contains multiple channels and is associated with a specific mapping of the channels to the system resources available for data transmission. Each channel set may be defined based on a channel tree having a hierarchical structure. To achieve intra-cell interference diversity, the channel-to-resource mapping for each channel set is pseudo-random with respect to the mapping for each remaining channel set. In each scheduling interval, terminals are scheduled for transmission on the forward and/or reverse link. The scheduled terminals are assigned channels from the channel sets. Multiple terminals may use the same system resources and their overlapping transmissions may be separated in the spatial domain. For example, beamforming may be performed to send multiple overlapping transmissions on the forward link, and receiver spatial processing may be performed to separate out multiple overlapping transmissions received on the reverse link.