Abstract:
A zoom optical system and an image pickup apparatus using the same are disclosed. The zoom optical system comprises a first optical unit having a refractive power, the first optical unit having a reflecting surface, a second optical unit having a refractive power, and a driving portion for moving a light receiving surface which receives light from an object through the first optical unit and the second optical unit. The zoom optical system performs variation of magnification by moving at least one of the first optical unit and the second optical unit, and a deviation of a focus position due to the variation of magnification is corrected by the light receiving surface being moved by the driving portion.
Abstract:
A reflecting-type optical system according to the invention includes an optical element composed of a transparent body having an entrance surface, an exit surface and at least three curved reflecting surfaces of internal reflection. A light beam coming from an object and entering at the entrance surface is reflected from at least one of the reflecting surfaces to form a primary image within the optical element and is, then, made to exit from the exit surface through the remaining reflecting surfaces to form an object image on a predetermined plane. In the optical system, 70% or more of the length of a reference axis in the optical element lies in one plane.
Abstract:
In a multi-eye camera head unit (10), a panoramic image sensing exchangeable camera head unit (111) and three-dimensional image sensing exchangeable camera head unit (112) are exchanged in correspondence with the image sensing mode. The panoramic image sensing exchangeable camera head unit (111) includes a pair of optical elements (111R, 111L), which comprise offaxial optical systems each having a plurality of reflecting and refracting surfaces. The three-dimensional image sensing camera head unit (112) includes a pair of optical elements (112R, 112L), which comprise offaxial optical systems each having a plurality of reflecting and refracting surfaces.
Abstract:
An optical element includes an incidence surface, one or more reflecting surfaces reflecting light from the incident surface, an emergence surface, and off-axial curved surfaces causing the light to emerge from the emergence surface. At least one of the incidence surface, the emergence surface and the one or more reflecting surfaces is a surface having diffracting action. The surface having the diffracting action is a curved surface.
Abstract:
A variable magnification optical system comprises at least three optical units which are a first moving optical unit, a fixed optical unit and a second moving optical unit. The three optical units are arranged in that order in a propagation direction of light, and a variation of magnification is effected by a relative movement between the first moving optical unit and the second moving optical unit. If a ray which exits from an object and enters the variable magnification optical system, and passes through a center of a stop of the variable magnification optical system and reaches a center of a final image plane is represented as a reference axis ray, the second moving optical unit has a cross-sectional shape which is asymmetrical in a plane which contains the reference axis, and a curved reflecting surface which is inclined with respect to the reference axis, and the direction of the entering reference axis and the direction of the exiting reference axis of the second moving optical unit are parallel to each other and differ from each other by 180°, the variable magnification optical system being arranged in such a manner that a final image is formed after an intermediate image is formed at least twice.
Abstract:
An optical system in which rays of light from an object pass through includes a first lens unit having at least one off-axial curved surface, a second lens unit and a third lens unit having at least one off-axial curved surface in the named order and wherein chiefly the first lens unit and the third lens unit cancel aberrations created by the off-axial curved surfaces with each other so that totally good aberration correction may be effected.
Abstract:
A zoom lens comprises a plurality of optical elements each of which includes a transparent body having two refracting surfaces and a plurality of reflecting surfaces and is arranged so that a light beam enters the transparent body from one of the two refracting surfaces, repeatedly undergoes reflection, and exits from the other of the two refracting surfaces, and/or a plurality of optical elements on each of which a plurality of reflecting surfaces made from front surface mirrors are integrally formed, and each of which is arranged so that an entering light beam repeatedly undergoes reflection by the plurality of reflecting surfaces and exits from the optical element. In the zoom lens, the optical element which the light beam from an object enters first has an entrance pupil positioned on an object side of a first reflecting surface, and an image of the object is formed via the plurality of optical elements and zooming is performed by causing at least two optical elements from among the plurality of optical elements to vary their relative positions.
Abstract:
The structure of a compound is expressed as an atom connection table using an electronic computer. The structure is registered in a three-dimensional manner, making it possible to effect the interconversion between the atom connection table and symbols R, S that represent absolute configuration of asymmetric carbon atoms, or .alpha., .beta. that represent directions of substitution relative to the plane the ring. Namely, in the case of a ring compound, bonded atoms in the clockwise and counterclockwise directions, and bonded atoms in the upward and downward directions of the ring are stored in the separate predetermined registers. In the case of a chain compound, bonded atoms in the right and left directions, and bonded atoms in the upward and downward directions are stored in the separate predetermined registers. On the atom connection table, therefore, the rotational directing of bonded atoms can be defined as viewed from a given direction. It is therefore possible to prepare the atom connection table reflecting the symbols in the compound name, to store three-dimensional structures of compounds, and to process and produce the data.
Abstract:
An optical element comprising an object-side imaging element for imaging an object on an intermediate image plane in an optical path before a final image plane and an image-side imaging element for reimaging an object image formed on the intermediate image plane, on the final image plane, wherein at least one of the object-side imaging element and the image-side imaging element comprises an off-axial curved surface, and wherein aberration is generated by both of the object-side imaging element and the image-side imaging element, thereby flattening (disturbance of) a light intensity distribution caused on the final image plane by a noise source at or near the intermediate image plane.
Abstract:
A reflecting type of zoom optical system comprises a plurality of optical elements each of which includes a transparent body and two refracting surfaces and a plurality of reflecting surfaces formed on the transparent body and is arranged so that a light beam enters the transparent body from one of the two refracting surfaces, repeatedly undergoes reflection by the plurality of reflecting surfaces, and exits from the other of the two refracting surfaces, and/or a plurality of optical elements on each of which a plurality of reflecting surfaces made from surface reflecting mirrors are integrally formed, and each of which is arranged so that an entering light beam repeatedly undergoes reflection by the plurality of reflecting surfaces and exits from the optical element. In the reflecting type of zoom optical system, an image of an object is formed via the plurality of optical elements and zooming is performed by causing at least two optical elements from among the plurality of optical elements to vary their relative positions.