摘要:
Novel methods are disclosed for designing and constructing miniature optical systems and devices employing light diffractive optical elements (DOEs) for modifying the size and shape of laser beams produced from a commercial-grade laser diodes, over an extended range hitherto unachievable using conventional techniques. The systems and devices of the present invention have uses in a wide range of applications, including laser scanning, optical-based information storage, medical and analytical instrumentation, and the like. In the illustrative embodiments, various techniques are disclosed for implementing the DOEs as holographic optical elements (HOEs), computer-generated holograms (CGHs), as well as other diffractive optical elements.
摘要:
An optical system includes a diffractive optical element having a diffraction grating provided, on a lens surface having a curvature, in a concentric-circles shape rotationally-symmetrical with respect to an optical axis. The sign of the curvature of the lens surface having the diffraction grating provided thereon is the same as the sign of a focal length, at a design wavelength, of a system composed of, in the optical system, a surface disposed nearest to an object side to a surface disposed immediately before the lens surface having the diffraction grating provided thereon, and is different from the sign of the distance from the optical axis to a position where the center ray of an off-axial light flux enters the lens surface having the diffraction grating provided thereon. Further, the apex of an imaginary cone formed by extending a non-effective surface of the diffraction grating is located adjacent to the center of curvature of the lens surface having the diffraction grating provided thereon.
摘要:
Disclosed is an optical element including a substrate made of a monocrystal of a fluoride compound, and a fine structure formed on the substrate and made of a non-monocrystal of metal fluoride. Also disclosed are an optical system having such optical element, and an exposure apparatus having such optical system incorporated therein.
摘要:
An optical system including a diffraction optical element and for forming an image of an object by light having a given wavelength width includes at least one diffraction optical element and a diffraction light selection element for transmitting a diffraction light of given order to an output side of the diffraction optical element and for attenuating the diffraction light of orders other than the given order.
摘要:
A diffractive-refractive achromatic lens that has a positive resultant power includes a refractive lens system and a positive diffractive grating. The refractive lens system is provided with a positive lens having relatively small dispersion, a negative lens having relatively large dispersion and an additional refractive lens. The additional refractive lens is a positive lens. The refractive lens system exhibits longitudinal chromatic aberration that is substantially proportional to wavelength such that the back focus of the refractive lens system decreases as the wavelength becomes shorter. The positive diffractive grating corrects the longitudinal chromatic aberration of the refractive lens system. The condition 0.005
摘要:
A diffractive optical element efficiently converts an input light beam into an output light beam having a specified cross-sectional shape. The diffractive optical element includes a plurality of partial optical elements. The plurality of partial optical elements convert the input light beam to respective partial light beams, each of which has a shape that does not correspond to the specified cross-sectional shape. The sum of the partial light beams matches the shape of the output light beam (i.e., having the specified cross-sectional shape).
摘要:
An optical component including: a substrate made from heat absorptive glass having a front surface and a rear surface, at least one of said surfaces being a crenulate surface having optical power.
摘要:
A display system includes a diffraction grating that generates exit-pupil images, where one of the exit-pupil images has a first intensity and the remaining exit-pupil images each have or approximately have a second intensity that is less than the first intensity. The system also includes a filter that attenuates the intensity of the one exit-pupil image. In one example, the filter attenuates the 0th-order exit-pupil image so that all of the exit-pupil images have the same or approximately the same intensities.
摘要:
A system and method are provided for writing refractive index structures, such as gratings, in an optical waveguide. There is no requirement for structures having interferometric stability of the control elements. The method includes providing first and second light beams, the first beam having a first polarization state and a first wavevector, the second beam having a second polarization state different from the first polarization state, and a second wavevector different from the first wavevector. The method also includes illuminating a diffractive optical element by at least a part of the first beam and a part of the second beam so as to diffract parts of the first and second beams, and positioning the medium in relation to the diffractive element so as to illuminate the first part of the medium by the diffracted parts of the first and second beams.
摘要:
The present invention discloses a dual-lens hybrid diffractive/refractive imaging system comprising: a first lens including a concave surface and a convex surface; and the second lens including a convex surface and a concave surface. The concave surface of the first lens is an objective surface facing the object. The convex surface faces the convex surface of the second lens, while the concave surface of the second lens faces the charge-coupled device (CCD) through a filter. Any surface of the first lens and the second lens is spheric or aspheric. Moreover, the imaging system comprises at least one diffractive surface, referred to as a hybrid diffractive/refractive surface, formed on any surface of the two lenses. Therefore, aberration is eliminated and image quality is improved without increasing the number of lenses.