Abstract:
A recording method of an optical recording medium comprises irradiating the medium with a laser having m pulse sets each comprising a heating pulse and a cooling pulse, in which m is a natural number; and scanning the medium with the laser at a scanning speed v to record marks each of a length nT, in which n is a natural number of 3 or more and T is a clock cycle, wherein a length TCPn of a final cooling pulse is determined in accordance with the scanning speed v using the following functions, in v
Abstract translation:光记录介质的记录方法包括用m个脉冲组的激光照射介质,每个脉冲组包括加热脉冲和冷却脉冲,其中m是自然数; 并且以扫描速度v用激光扫描介质,以记录每个长度为nT的标记,其中n为3或更大的自然数,T为时钟周期,其中确定最终冷却脉冲的长度TCPn 根据使用以下功能的扫描速度v,在v v0,TCPn / T = f1,n(v)v v0,TCPn / T = f2,n(v)中,其中,f1,n(v) f2,n(v)表示扫描速度v的连续函数,满足异常标记的存在比为1.0×10 -4以下,v0为可选择扫描速度的条件。
Abstract:
To provide an optical recording medium in which error-causing short marks are produced in numbers small enough excellent high-recording characteristics and in which amorphous marks are uniform in shape. The optical recording medium includes: a first protective layer; a recording layer containing Sb as a main ingredient; a second protective layer; and a reflective layer, the first protective layer, the recording layer, the second protective layer and the reflective layer being provided in the order in which light passes through the medium for recording and reproduction of information, wherein the first protective layer and/or the second protective layer, both of which are in contact with the recording layer, are/is formed of a crystalline oxide.
Abstract:
The present invention provides a method for forming a pattern, containing: stacking a master having at least a two-dimensional pattern or a three-dimensional pattern formed thereon and a pattern-transferring material containing at least a recording layer which changes a state thereof as light is transmitted thereto; and transmitting light to the recording layer so as to transfer the pattern of the master onto the recording layer.
Abstract:
An optical disc having a transition linear velocity of 8-11 m/s when irradiating continuous light with 11±1 mW and a wavelength of 660±10 nm using a pickup head with a numerical aperture (NA) of 0.65, and satisfying the following condition: ΔR=|Rb−Ra|≦3% where Rb is a reflectance of an unrecorded area, and Ra is a reflectance of the top of an eye pattern after ten cycles of recording. In one recording mode therefor, the disc is rotated at a constant angular velocity so as to have a linear velocity of 3-4 m/s on an innermost track and a linear velocity of 8-9 m/s on an outermost track. In another mode, the disc is rotated at a constant angular velocity so as to have a linear velocity of 5-6 m/s on an innermost track and a linear velocity of 13-14 m/s on an outermost track.
Abstract:
A recording method of an optical recording medium comprises irradiating the medium with a laser having m pulse sets each comprising a heating pulse and a cooling pulse, in which m is a natural number; and scanning the medium with the laser at a scanning speed v to record marks each of a length nT, in which n is a natural number of 3 or more and T is a clock cycle, wherein a length TCPn of a final cooling pulse is determined in accordance with the scanning speed v using the following functions, in v
Abstract translation:光记录介质的记录方法包括用m个脉冲组的激光照射介质,每个脉冲组包括加热脉冲和冷却脉冲,其中m是自然数; 并且以扫描速度v用激光扫描介质,以记录每个长度为nT的标记,其中n为3或更大的自然数,T为时钟周期,其中确定最终冷却脉冲的长度TCPn 根据使用以下功能的扫描速度v,在v v0,TCPn / T = f1,n(v)v v0,TCPn / T = f2,n(v)中,其中,f1,n(v) f2,n(v)各自表示扫描速度v的连续函数,满足异常标记的存在率为1.0×10 -4以下,v0为可选择扫描速度的条件。
Abstract:
It is an object of the present invention to provide a phase-change information recording medium, and the like, which is easy to perform initial crystallization, exhibits good recording sensitivity at a linear velocity as high as 10 double speeds or more with as much capacity as DVD-ROM, is capable of overwrite recording and has good storage reliability. For this purpose, the phase-change information recording medium comprises a substrate and at least a first protective layer, a phase-change recording layer, a second protective layer, and a reflective layer disposed on the substrate in one of this sequence and reverse sequence wherein the phase-change recording layer comprises a composition expressed by SnαSbβGaγGeδTeε−Xζ (In this regard, X represents at lease one element selected from Ag, Zn, In and Cu. α, β, γ, δ, ε and ζ represent composition ratio (atomic percent) of each element and are expressed as 5≦α≦25, 40≦β≦91, 2≦γ≦20, 2≦δ≦20, 0≦ε≦10, 0≦ζ≦10 and α+β+γ+δ+ε+ζ=100).
Abstract:
The object is to provide an optical recording method improving the recording characteristics and uniformity in a CAV recording on a phase-change optical recording medium, particularly a high-speed rewritable DVD medium, and a phase-change optical recording medium and an optical recording apparatus used by the method. Regarding a recording method for recording on the phase-change optical recording medium where a recording light comprises a pulse string of heating and cooling pulses, and a light for erasing, an irradiation power is controlled by peak power (Pp), bottom power (Pb) and erase power (Pe), at least any one of Pe/Pp, Pp, Pb and Pe is variable from the minimum to maximum recording linear velocities allowed for the medium, and further the irradiation time of each pulse is varied proportionally with clock T corresponding to a recording linear velocity, the present invention provides an optical recording method which performs a recording by varying at least Pe/Pp from a specific recording linear velocity lower than a peculiar recording linear velocity at which the recording linear velocity degrades abruptly showing a local maximum value, and an optical recording medium and an optical recording apparatus used by the method.
Abstract:
The present invention has determined that exogenously added glycosylceramide (GlcCer) and other neutral glycolipids such as the homologous Glc-containing globotriaosylceramide (Gb3Cer), dose-dependently prolonged clotting times of normal plasma in the presence but not absence of APC:protein S, indicating GlcCer or Gb3Cer can enhance protein C pathway anticoagulant activity. In studies using purified proteins, inactivation of factor Va by APC:protein S was enhanced by GlcCer alone and by GlcCer, globotriaosylceramide, lactosylceramide, and galactosylceramide in multicomponent vesicles containing phosphatidylserine and phosphatidylcholine. Thus, the present invention provides neutral glycolipids such as GlcCer and Gb3Cer, as anticoagulant cofactors that contribute to the antithrombotic activity of the protein C pathway. The present invention has also determined that a deficiency of plasma GlcCer is a risk factor for thrombosis. Methods are provided to determine individuals at risk for thrombosis, methods of treatment as well as methods of screening for antithrombotic factors from neutral glycolipids.
Abstract:
An optical information recording medium includes a first dielectric protective layer, a recording layer provided on the first dielectric protective layer, including a material represented by a chemical formula of Ag&agr;In&bgr;Sb&ggr;Te&dgr;, wherein &agr;, &bgr;, &ggr; and &dgr; respectively represent an atomic percent of Ag, an atomic percent of In, an atomic percent of Sb, and an atomic percent of Te, and satisfy the conditions of: 1≦&agr;
Abstract:
A sputtering target, for forming a recording layer of an optical recording medium in which information is written and erased through a transition between two phases by utilizing electromagnetic wave energy, consists of a heat-treated and sintered composition represented by the formula:Ag.sub..alpha. In.sub..beta. Te.sub..gamma. Sb.sub..delta.wherein2.ltoreq..alpha..ltoreq.303.ltoreq..beta..ltoreq.3010.ltoreq..gamma..ltoreq.5015.ltoreq..delta..ltoreq.83.alpha.+.beta.+.gamma.+.delta.=100A method of producing the sputtering target, an optical recording medium having a recording layer formed through sputtering by use of the sputtering target, and a method of forming the recording layer are also disclosed.