Abstract:
Disclosed is a method for preparing an N-acetyl-D-galactosamine tripolymer precursor. In the preparation of the tripolymer precursor, a compound 4 is prepared by the following steps: adding a compound 3, a 4Å molecular sieve powder, and a reaction solvent into a reactor; inflating and changing protective gas for 3 times; stirring; firstly adding an enol, followed by slowly dropping trimethylsilyl trifluoromethanesulfonate; after a reaction, quenching the reaction with an alkali solution; and performing extraction, separating liquid, washing, drying, filtration, etc., so as to obtain the compound 4. According to the present disclosure, the problems of various production processes, more times of column chromatography for purification of products accompanied by lower yields in the prior art are solved.
Abstract:
The present invention relates to a 3′-ketoglycoside compound defined by formula (I) and its use for controlled release of alcohols, in particular alcohols showing an insect repellent effect. It relates also to a process for preparing the 3′-ketoglycoside compound of formula (I). It further relates to a composition comprising a 3′-ketoglycoside compound of formula (I). It relates also to the use of a 3′-ketoglycoside compound of formula (I) for the controlled release of alcohols. It related also to a method of use of such composition.
Abstract:
The present invention relates to a process for efficiently synthesizing highly optically active 1,3-disubstituted allenes, i.e., a one-step process for preparing highly optically active 1,3-disubstituted allenes by using a functionalized terminal alkyne, an aldehyde and a chiral α,α-diphenyl prolinol as reactants under the catalysis of a divalent copper salt. The operation of the process is simple, and the raw materials and reagents are readily available. The process has a broad-spectrum of substrates and a good compatibility for a wide variety of functional groups such as glycosidic units, primary alcohols, secondary alcohols, tertiary alcohols, amides, malonates, etc., and does not require the protection for the functional groups. The obtained axially chiral allene has a moderate to high yield and a good diastereoselectivity or enantioselectivity.
Abstract:
A modified cellulose is provided. The modified cellulose is represented by the chemical formula (1): wherein n is between 60 and 2500, at least one R is selected from one of the group consisting of R1 is C11 to C32 alkyl group or C11 to C32 alkenyl group, R2 is hydrogen, C3 to C29 alkyl group or C3 to C29 alkenyl group, R3 is C3 to C29 alkyl group or C3 to C29 alkenyl group, R4 is C4 to C8 cycloalkyl group or C4 to C8 cycloalkenyl group, n2 is between 15 and 33, n4 is between 20 and 40.
Abstract:
A process for preparing pure monosialoganglioside GM1 in the form of its sodium salt. There is provided a process for the isolation and purification of monosialoganglioside GM1 comprising (a) separation of GM1 from a lipidic mixture containing the monosialoganglioside GM1 as the main ganglioside component by ion exchange column-chromatography using an eluent comprising potassium or caesium ions, (b) recovery of the solute from the eluted solution, (c) diafiltration of an aqueous solution of the recovered solute, and (d) second diafiltration after the addition of 1 M NaCl, and recovering GM1. The purity level of GM1 obtained is higher than 99.0%.
Abstract:
An alkenyl glycoside is prepared by reacting a metathesis-derived unsaturated fatty alcohol containing 10 to 30 carbon atoms with either (1) a reducible monosaccharide or composition hydrolyzable to a reducible monosaccharide, or (2) a hydrocarbyl glycoside produced by reacting an alcohol containing up to 6 carbon atoms with a reducible monosaccharide or composition hydrolyzable to a reducible monosaccharide. Each of these reactions is performed in the presence of an acid catalyst and under conditions sufficient to form the alkenyl glycoside or hydrocarbyl glycoside. The preferred alkenyl glycosides are 9-decen-1-yl glycoside; 9-dodecen-1-yl glycoside; 9-tridecen-1-yl glycoside; 9-pentadecen-1-yl glycoside; 9-octadecen-yl glycoside; or 9-octadecen-1,18-diyl glycoside.
Abstract:
Described herein are synthetic glycan conjugates, immmunogenic compositions thereof, vaccines thereof, and kits thereof. The present invention further provides methods of using the synthetic glycan conjugates, immunogenic compositions, or vaccines thereof to treat and/or prevent and/or diagnose proliferative diseases such as cancer. The provided glycan conjugate comprises a carrier and a glycan moiety of Formula (I-i) or Formula (I-ii): (structurally represented).
Abstract:
Open chain sophorolipids may be produced by fermentation with Candida sp. NRRL Y-27208 or C. riodocensis. Dimers and trimers of sophorolipids are also produced. The sophorolipds are produced by inoculating a fermentation medium comprising a carbon source and a lipid, with Candida riodocensis or Candida species NRRL Y-27208, and incubating under aerobic conditions and for a period of time effective to produce an open chain sophorolipid in the medium. The sophorolipids may be subsequently recovered from the fermentation medium.
Abstract:
The present invention provides a novel sialo-sugar chain, a process for producing the sialo-sugar chain, and a device for producing the sialo-sugar chain. A sialo-sugar chain can be easily and efficiently mass-produced by reacting a sugar wherein a hydroxy groups is substituted with an alkynyl group (herein sometimes referred to as “alkynylated sugar”) with a specific sialic acid donor in the presence of a sialic acid-introducing enzyme.
Abstract:
The present invention discloses the use of certain compounds as therapeutic agents, and in particular as analgesics and anti-inflammatory agents. Such compounds include, for example, certain diterpene monoglycosides and diterpene diglycosides. The compounds of the present invention may be synthesized or isolated from the fruit of the genus Capsicum, and in particular may be isolated from sweet bell peppers (C. annuum). Pharmaceutically-acceptable salts, enantiomers, diasteriomers, racemic mixtures, enantomerically-enriched mixtures, solvates, and prodrug s of such compounds are also disclosed. Pharmaceutical compositions and methods of using such compounds, including pharmaceutical compositions and methods of using such compounds in combination with one or more active ingredients, are also disclosed.