Abstract:
An optical pickup unit includes a light source of semiconductor laser chips of different light-emission wavelengths; a plurality of holograms placed between the light source and an optical recording medium, the holograms including at least one non-polarization hologram having a substantially uniform diffraction efficiency irrespective of the direction of polarization of incident light and at least one polarization hologram having a diffraction efficiency varying depending on the direction of polarization of incident light; and a wave plate provided between the optical recording medium and the polarization hologram. The returning beam of a light beam emitted from a selected one of the semiconductor laser chips is diffracted by the corresponding one of said holograms to be received by a light-receiving element. The wave plate turns the direction of polarization of the returning beam to a different direction from that of the emitted light beam.
Abstract:
An optical pickup apparatus includes first and second light sources which selectively emit one of first and second light beams, the first and second light beams being different in wavelength, the wavelengths of the first and second light beams being appropriate for accessing first and second optical disks respectively. A coupling lens converts a corresponding one of the first and second light beams into a collimated beam. An objective lens forms a light spot on a corresponding one of the first and second optical disks by focusing the collimated beam. A holographic optical element receives a reflection beam of the light spot from one of the first and second optical disks and provides holographic effects on the reflection beam so as to diffract the reflection beam in predetermined diffracting directions depending on the wavelength of the reflection beam. A photodetector receives the reflection beam from the holographic optical element at light receiving areas and outputs signals indicative of respective intensities of the received reflection beam at the light receiving areas, so that a focusing error signal and a tracking error signal are generated based on the signals.
Abstract:
A rotation quantity measuring method and system measures a rotation quantity of an object body. The rotation quantity is measured by irradiating a light from a light source on a grating pattern which is formed on a peripheral surface of a cylindrical body which rotates integrally with the object body, and detecting a shadow picture pattern which is generated by a reflected light received from the grating pattern based on a diffraction caused by the grating pattern. Then, the rotation quantity of the object body is measured based on a movement of the shadow picture pattern as the object body rotates.
Abstract:
A plurality of laser beams are applied to a scanning medium at different positions thereon and are converted thereby to respective scanning light beams. The laser beams are modulated by color image signals representative of respective differently colored images. As the scanning medium rotates, it deflects the applied laser beams and emits them as the scanning light beams. The scanning light beams are then applied to respective photosensitive bodies to scan them, forming latent images thereon which correspond to the color image signals, respectively. The latent images are developed into respective color images which are transferred and fixed to a single recording medium thereby to form a color image thereon.
Abstract:
In an optical scanning apparatus, a hologram prepared by the interference of two rays of light, each of which has a spherical wave or one of which has a spherical wave and the other of which has a plane wave, is illuminated by a reconstruction light containing an image signal, and the reconstruction light and the hologram are moved relative to each other. A beam produced from the hologram in accordance with the relative movement of the hologram is led onto a surface to be scanned, while continuously changing its output angle, and plural beams containing image information therein, which are modulated by plural and different image signals, are caused to enter the hologram simultaneously. Plural beams are thus diffracted and plural lines on the surface to be scanned are scanned simultaneously.
Abstract:
Two lens groups are arranged symmetrically on opposite sides of a mirror which may be a half-mirror or a dichroic mirror. The mirror is oriented perpendicular to the optical axis of the lens groups. A light image incident on the lens assembly at an angle to the optical axis is split into two beams, one beam being transmitted through the mirror and the other being reflected by the mirror. The refraction of the two beams is the same since the reflected beam passes through the front lens group twice. Where the mirror is dichroic the beams constitute color components of the light image above and below the cutoff wavelength of the dichroic mirror.
Abstract:
P-polarized light beam passing through an fθ lens passes through a polarization beam splitter, is converted into S-polarized light beam by a quarter-wave plate and a reflecting mirror, re-enters the polarization beam splitter, and is reflected at the polarization beam splitter in the −Z direction. An optical path of a light beam between a polygon mirror and the fθ lens, between the fθ lens and the polarization beam splitter, between the polarization beam splitter and the quarter-wave plate, between the quarter-wave plate and a reflecting mirror, between the reflecting mirror and the quarter-wave plate, and between the quarter-wave plate and the polarization beam splitter are in the same plane.
Abstract:
An optical pickup apparatus used in an optical data recording/reproducing apparatus for reading/reproducing data on an optical recording medium, including a light source, a diffracting device configured to transmit a light beam and to diffract a light beam reflected from the optical recording medium, an optical device having a reflecting portion and a transmitting portion configured to reflect one part of the light beam emitted from the light source and to transmit another part of the light beam to the optical recording medium and from the optical recording medium, and a photodetecting device to detect the light beam from the optical recording medium for signal light detection, and the light beam reflected by the reflecting portion of the optical device for monitor light detection of the light source.
Abstract:
An optical pickup apparatus used in an optical data recording/reproducing apparatus for reading/reproducing data on an optical recording medium, including a light source, a diffracting device configured to transmit a light beam and to diffract a light beam reflected from the optical recording medium, an optical device having a reflecting portion and a transmitting portion configured to reflect one part of the light beam emitted from the light source and to transmit another part of the light beam to the optical recording medium and from the optical recording medium, and a photodetecting device to detect the light beam from the optical recording medium for signal light detection, and the light beam reflected by the reflecting portion of the optical device for monitor light detection of the light source.
Abstract:
In an optical pickup method and device of the present invention, a grating unit separates a light beam, emitted by a light source, into a 0th order diffracted beam and 1st order diffracted beams. An objective lens focuses the diffracted beams, sent from the grating unit, onto a recording surface of an optical recording medium through a transparent substrate of the medium, so that a main spot is formed on the recording surface by the 0th order diffracted beam and sub-spots, interposing the main spot therebetween, are formed on the recording surface by the 1st order diffracted beams. A reflection beam detector receives reflection beams from the main spot and the sub-spots of the medium to generate detection signals from the received reflection beams. A control unit changes a pattern of the beams incident to the objective lens to correct a spherical aberration due to a deviation of a thickness of the substrate of the medium, and moves the grating unit relative to the light source to cancel shifting of sub-spot positions on the recording surface due to the spherical aberration correction, in order to generate a proper tracking error signal.