Abstract:
In a wall electrode liquid crystal display device, planar distribution of the wall structure and the electrode is optimized to improve a yield. A liquid crystal display device includes a plurality of pixels arranged in a matrix, each of the pixels having an insulator wall structure formed at a border of pixels, a wall electrode formed at a side surface of the wall structure of the border of the pixels, a source electrode which is continuous with the wall electrode and formed of a planar electrode extending in a planar direction, a first common electrode provided between source electrodes at both sides of the pixel to form a retentive capacitance, and a second common electrode provided between wall electrodes on both sides of the pixel. A slit which becomes a border of the wall electrodes of two adjacent pixels is disposed only on a top of the wall structure.
Abstract:
A manufacturing method of a display device having an array substrate includes the steps of forming a projection of an organic material in a pixel on the array substrate by patterning a photosensitive material or by inkjet, forming a TFT on the array substrate, wherein a source electrode of the TFT is formed to extend on at least part of the upper surface of the projection, forming an inorganic passivation layer over the TFT and over at least part of the upper surface of the projection, forming an organic passivation layer over the inorganic passivation layer, forming an upper insulating layer over at least part of the organic passivation layer, forming a contact hole in the inorganic passivation layer and the upper insulation layer over the upper surface of the projection, and forming a pixel electrode on the upper insulation layer which contacts the source electrode.
Abstract:
Disclosed is a liquid crystal display device including an active element substrate having an active element; a first layer provided on the active element and having a first hole formed therein, the first layer being one of a first insulating layer and a color filter; a second layer provided on the first layer and having a second hole formed therein, the second layer being the other of the first insulating layer and the color filter; a common electrode provided on the second layer; a second insulating layer having a plate-like portion provided on the common electrode and a first contact portion protruded downward; and a pixel electrode having a second contact portion protruded downward. The first contact portion is provided inside the second hole, and the second contact portion is provided inside the first hole and inside the second hole and electrically connected to the active element.
Abstract:
A first electrode 30 for the touch panel is formed on an outer side of a counter substrate 200, and the protection film 210 is formed over the first electrode 30 to cover it. A defect 211 in the protection film 210 is filled in with another protection film 210 by inkjet coating. The surface of the protection film 210 is rubbed to a rough surface finish. The polarization plate 220 is attached to the rough surface of the protection film 210 via an adhesive material 221. Since the defective region is repaired by the formation of the protection film 210, corrosion of the first electrode (wiring) 30 due to the presence of the adhesive material 221 can be prevented, and since the surface of the second protection film 210 is made rough, a resulting increase in adhering surface area enhances the adhesion for attaching the polarization plate 220.
Abstract:
When a protective film is formed so as to cover an electrode, a position of an end portion of the protective film is highly accurately adjusted. An electrode substrate includes a second substrate, and a sensing electrode continuously formed on the second substrate from a first region on an upper surface of the second substrate via a second region on the upper surface of the second substrate over a third region on the upper surface of the second substrate. Also, the electrode substrate includes a concave/convex pattern formed on the sensing electrode or the second substrate in the second region, and a protective film formed in the first region and the second region so as to cover the sensing electrode. An end portion of the protective film on the third region side is positioned on the concave/convex pattern.
Abstract:
In an LCD device, the slope angle of a wall surface of a wall structure (wall-surface slope angle) is varied in accordance with the angle formed between the wall structure and an alignment treatment direction (alignment treatment angle). At places where the alignment treatment angle is small, the wall-surface slope angle is made larger; conversely, at places where the alignment treatment angle is large, the wall-surface slope angle is made smaller.
Abstract:
In an LCD device having wall electrodes, four kinds of pixels are used that impart different alignment properties to the liquid crystal molecules. Specifically, the LC molecules are aligned such that: the LC molecules in first pixels twist clockwise and rise in a plus direction; the LC molecules in second pixels twist clockwise and rise in a minus direction; the LC molecules in third pixels twist counterclockwise and rise in the plus direction; and the LC molecules in fourth pixels twist counterclockwise and rise in the minus direction. The pixels of the same type are arranged in rows such that their long sides are adjacent to one another.
Abstract:
In an IPS mode liquid crystal display device, a counter electrode is formed flat on a first insulating film. A second insulating film is formed in the peripheral portion of the counter electrode. A third insulating film is formed so as to cover the counter electrode and the second insulating film. A pixel electrode is formed on the third insulating film. The second and third insulating films are present between the pixel electrode and the counter electrode in the periphery of the pixel. The third insulating film is present between the pixel electrode and the counter electrode in the portion other than the peripheral portion of the pixel. An electric field between the pixel electrode and the counter electrode is smaller in the periphery of the pixel than in the vicinity of the center of the pixel, to prevent the occurrence of a domain in the periphery of the pixel.
Abstract:
A high-definition and high-contrast liquid crystal display device having a high aperture ratio without light leakage around a columnar spacer is provided. The liquid crystal display device of a horizontal electric field type includes a TFT substrate with a pixel electrode and a common electrode, a color filter substrate with a color filter, a columnar spacer interposed between the substrates, and a liquid crystal layer arranged between the substrates. A liquid crystal alignment film formed between the substrates is a photo-alignment film. The columnar spacer, formed on the color filter substrate or the TFT substrate, has a wall-like shape and an inclined surface extending in a direction parallel to or perpendicular to a direction in which the liquid crystal is initially aligned.