摘要:
This disclosure relates to transformation invariant media matching. A fingerprinting component can generate a transformation invariant identifier for media content by adaptively encoding the relative ordering of signal markers in media content. The signal markers can be adaptively encoded via reference point geometry, or ratio histograms. An identification component compares the identifier against a set of identifiers for known media content, and the media content can be matched or identified as a function of the comparison.
摘要:
The subject matter of this specification can be embodied in, among other things, a method that includes generating content-based keywords based on content generated by users of a social network. The method includes labeling nodes comprising user nodes, which are representations of the users, with advertising labels comprising content-based keywords that coincide with advertiser-selected keywords that are based on one or more terms specified by an advertiser. The method also includes outputting, for each node, weights for the advertising labels based on weights of advertising labels associated with neighboring nodes, which are related to the node by a relationship.
摘要:
A volume identification system identifies a set of unlabeled spatio-temporal volumes within each of a set of videos, each volume representing a distinct object or action. The volume identification system further determines, for each of the videos, a set of volume-level features characterizing the volume as a whole. In one embodiment, the features are based on a codebook and describe the temporal and spatial relationships of different codebook entries of the volume. The volume identification system uses the volume-level features, in conjunction with existing labels assigned to the videos as a whole, to label with high confidence some subset of the identified volumes, e.g., by employing consistency learning or training and application of weak volume classifiers.The labeled volumes may be used for a number of applications, such as training strong volume classifiers, improving video search (including locating individual volumes), and creating composite videos based on identified volumes.
摘要:
Convolutions are frequently used in signal processing. A method for performing an ordinal convolution is disclosed. In an embodiment of the disclosed subject matter, an ordinal mask may be obtained. The ordinal mask may describe a property of a signal. A representation of a signal may be received. A processor may convert the representation of the signal to an ordinal representation of the signal. The ordinal mask may be applied to the ordinal representation of the signal. Based upon the application of the ordinal mask to the ordinal representation of the signal, it may be determined that the property is present in the signal. The ordinal convolution method described herein may be applied to any type of signal processing method that relies on a transform or convolution.
摘要:
A concept learning module trains video classifiers associated with a stored set of concepts derived from textual metadata of a plurality of videos, the training based on features extracted from training videos. Each of the video classifiers can then be applied to a given video to obtain a score indicating whether or not the video is representative of the concept associated with the classifier. The learning process does not require any concepts to be known a priori, nor does it require a training set of videos having training labels manually applied by human experts. Rather, in one embodiment the learning is based solely upon the content of the videos themselves and on whatever metadata was provided along with the video, e.g., on possibly sparse and/or inaccurate textual metadata specified by a user of a video hosting service who submitted the video.
摘要:
Clustering algorithms such as k-means clustering algorithm are used in applications that process entities with spatial and/or temporal characteristics, for example, media objects representing audio, video, or graphical data. Feature vectors representing characteristics of the entities are partitioned using clustering methods that produce results sensitive to an initial set of cluster seeds. The set of initial cluster seeds is generated using principal component analysis of either the complete feature vector set or a subset thereof. The feature vector set is divided into a desired number of initial clusters and a seed determined from each initial cluster.
摘要:
The subject matter of this specification can be embodied in, among other things, a method that includes inferring labels for videos, users, advertisements, groups of users, and other entities included in a social network system. The inferred labels can be used to generate recommendations such as videos or advertisements in which a user may be interested. Inferred labels can be generated based on social or other relationships derived from, for example, profiles or activities of social network users. Inferred labels can be advantageous when explicit information about these entities is not available. For example, a particular user may not have clicked on any online advertisements, so the user is not explicitly linked to any advertisements.
摘要:
Disclosed herein is a method, a system and a computer program product for generating a statistical classification model used by a computer system to determine a class associated with an unlabeled time series event. Initially, a set of labeled time series events is received. A set of time series features is identified for a selected set of the labeled time series events. A plurality of scale space decompositions is generated based on the set of time series features. A plurality of multi-scale features is generated based on the plurality of scale space decompositions. A first subset of the plurality of multi-scale features that correspond at least in part to a subset of space or time points within a time series event that contain feature data that distinguish the time series event as belonging to a class of time series events that corresponds to the class label are identified. A statistical classification model for classifying an unlabeled time series event based on the class corresponding with the class label is generated based at least in part on the at the first subset of the plurality of multi-scale features.
摘要:
A method and system generates and compares fingerprints for videos in a video library. The video fingerprints provide a compact representation of the spatial and sequential characteristics of the video that can be used to quickly and efficiently identify video content. Because the fingerprints are based on spatial and sequential characteristics rather than exact bit sequences, visual content of videos can be effectively compared even when there are small differences between the videos in compression factors, source resolutions, start and stop times, frame rates, and so on. Comparison of video fingerprints can be used, for example, to search for and remove copyright protected videos from a video library. Further, duplicate videos can be detected and discarded in order to preserve storage space.
摘要:
Disclosed herein is a method, a system and a computer program product for generating a statistical classification model used by a computer system to determine a class associated with an unlabeled time series event. Initially, a set of labeled time series events is received. A set of time series features is identified for a selected set of the labeled time series events. A plurality of scale space decompositions is generated based on the set of time series features. A plurality of multi-scale features is generated based on the plurality of scale space decompositions. A first subset of the plurality of multi-scale features that correspond at least in part to a subset of space or time points within a time series event that contain feature data that distinguish the time series event as belonging to a class of time series events that corresponds to the class label are identified. A statistical classification model for classifying an unlabeled time series event based on the class corresponding with the class label is generated based at least in part on the at the first subset of the plurality of multi-scale features.