摘要:
In one of its aspects, the technology concerns a method of processing a signal which includes physical data channels which have been channelized using spreading codes. The method comprises (1) despreading unoccupied spreading codes (e.g., codes which are essentially unobscured by traffic data) included in the signal to obtain unoccupied code despread values, (2) using the unoccupied code despread values to form an impairment covariance matrix; and (3) using the impairment covariance matrix along with a channel estimate to form a processing parameter. The processing parameter can be one of combining sets and a signal quality estimate. In another of its aspects, the technology concerns a coherent, linear equalizer apparatus configured to process a signal which includes physical data channels which have been channelized using spreading codes. The equalizer apparatus comprises plural delay fingers (32) configured to despread unoccupied spreading codes included in the signal to obtain unoccupied code despread values, and a generator (60) configured to use the unoccupied code despread values to form an impairment covariance matrix.
摘要:
Channel quality metrics (such as SINR, BLER, and the like) are derived from a raw bit error rate (RBER), defined as the error rate of raw bits output by a demodulator. These initial raw bits are decoded and error-checked (or error-corrected). The error-free decoded bits are re-encoded, and the regenerated raw bits are compared to the initial raw bits to determine the RBER. The RBER is then converted to SINR, BLER, or other channel quality metric. The RBER-based metrics are derived from a data channel rather than reference signals, and hence more accurately reflect deviations from nominal transmission power level, and include receiver demodulator impairments.
摘要:
In a receiver with a multi-stage equalizer, such as an SLI equalizer, cumulative symbol estimates generated in one or more early stages of the equalizer are used as effective pilot symbols to improve channel estimation for later stages.
摘要:
A node (e.g., base station, signal processing unit) is described herein that includes a symbol detector and a method which are capable of suppressing interference caused by one user device (which may be in softer handoff mode) to reduce performance degradation to other intra-cell user devices and/or other inter-cell user devices (which may not be in softer handoff mode).
摘要:
Methods and apparatus are disclosed for transmitting data to a remote node via each of two or more transmitted carrier signals, wherein a distinct outbound packet data traffic channel is mapped to each transmitted carrier signal. In an exemplary method, aggregated control channel data is formed by combining control channel data corresponding to each of two or more received carrier signals, simultaneously transmitting traffic channel data to the remote node on each of the two or more outbound packet data traffic channels, and transmitting the aggregated control channel data using one or more physical control channels mapped to a first one of the transmitted carrier signals. In particular, these methods and apparatus may be applied to a multi-carrier High-Speed Packet Access (HSPA) system.
摘要:
The method an apparatus described herein manages uplink resources to increase spectral efficiency and system capacity. According to one embodiment of the present invention, a base station may be assigned two or more downlink carriers for downlink transmission and two or more corresponding uplink carriers. In a multi-carrier mode, the base station may transmit signals on two or more downlink carriers to the same mobile terminal, and receive signals from the mobile terminal on one of the paired uplink terminals. The uplink carriers can be operated at different interference levels and the uplink traffic can be divided between the available uplink carriers based on the type of traffic and/or data transmission parameters. The mobile terminals may also be allowed to switch between the uplink carriers to improve overall efficiency.
摘要:
Multi-transmitter interference caused by one or more interfering own-cell and/or other-cell transmitters is reduced in a RAKE-based receiver. The RAKE-based receiver comprises a plurality of RAKE fingers, a processor and a combiner. The plurality of RAKE fingers are configured to despread received symbols, wherein a delay for a first one of the plurality of RAKE fingers corresponds to a symbol of interest transmitted by a first transmitter and a delay for a second one of the plurality of RAKE fingers corresponds to an interfering symbol transmitted by a second transmitter. The processor is configured to determine a cross-correlation between the symbol of interest and the interfering symbol. The combiner is configured to combine the symbol of interest with the interfering symbol using the cross-correlation to reduce interference attributable to the interfering symbol from the symbol of interest.
摘要:
A joint detector that improves the performance of receiving a downlink control channel signal for a near-end mobile terminal in the presence of a stronger control channel signal addressed to a far-end mobile terminal sharing the same OVSF, or channelization, code through the use of orthogonal signature sequences. Depending on the specific embodiment, the joint detector may produce the desired bits for the control signal of interest, or may produce detected bits for all control signals sharing the same OVSF code. The joint detector despreads and combines the received code-multiplexed signal, utilizing knowledge of the cross correlations of the set of signature sequences and time-varying channel coefficients to alleviate performance degradation caused by interference from other signals. In various embodiments, the joint detector may be implemented as a modified decorrelating detector, a modified MMSE detector, a modified LS estimator detector, a successive interference-canceling detector, or a jointly hypothesized detector.
摘要:
Acknowledgment signaling in a multiple carrier environment is enabled with a multiple carrier codebook having code words that jointly encode acknowledgment for at least two carriers. For an example embodiment, there is a method in a remote terminal for acknowledgment uplink signaling in a multiple-carrier mode. First, a code word is determined that jointly encodes acknowledgment signaling for at least two carriers from a multiple carrier codebook that is stored in the remote terminal. The multiple carrier codebook includes eight code words that are defined to have a single carrier codebook as a sub-codebook of the multiple carrier codebook, each code word of the eight code words having a length of ten. The multiple carrier codebook achieves a minimum Hamming distance of four among the eight code words. Second, an uplink signaling message that includes the determined code word is transmitted from the remote terminal to a wireless network node.
摘要:
Methods and apparatus are disclosed for suppressing both own-cell and other-cell interference in the processing of multiple signals of interest in a received composite signal. In an exemplary embodiment of the methods disclosed herein, combining weights for each of a first plurality of signals of interest in a composite information signal are computed, based on first shared signal correlation data computed from the composite information signal. A reduced-interference composite signal is calculated from the composite information signal, using, for instance, subtractive interference cancellation or interference projection techniques. Combining weights for processing each of a second plurality of signals of interest are computed as a function of second shared signal correlation data corresponding to the reduced-interference composite signal. Corresponding apparatus, including G-Rake and chip equalizer embodiments are also disclosed.