Abstract:
A stereo signal generating apparatus capable of obtaining stereo signals that exhibit a low bit rate and an excellent reproducibility. In this stereo signal generating apparatus (90), an FT part (901) converts a monaural signal (M′t) of time domain to a monaural signal (M′) of frequency domain. A power spectrum calculating part (902) determines a power spectrum (PM′). A scaling ratio calculating part (904a) determines a scaling ratio (SL) for a left channel, while a scaling ratio calculating part (904b) determines a scaling ratio (SR) for a right channel. A multiplying part (905a) multiplies the monaural signal (M′) of frequency domain by the scaling ratio (SL) to produce a left channel signal (L″) of a stereo signal, while a multiplying part (905b) multiplies themonaural signal (M′)of frequency domain by the scaling ratio (SR) to produce a right channel signal (R″) of the stereo signal.
Abstract translation:一种立体声信号发生装置,其能够获得表现出低比特率和优异的再现性的立体声信号。 在该立体声信号生成装置(90)中,FT部(901)将时域的单声道信号(M'SUB T< SUB)转换为频域的单声道信号(M')。 功率谱计算部(902)确定功率谱(P SUB M')。 缩放比例计算部分(904a)确定左通道的缩放比(S SUB> L),而缩放比例计算部分(904b)确定缩放比(S SUB> SUB>)。 乘法部分(905a)将频域的单声道信号(M')乘以缩放比(S L L L)以产生立体声信号的左声道信号(L“),而 乘法部分(905b)将频域的声场信号(M')乘以缩放比(S SUB R),以产生立体声信号的右声道信号(R“)。
Abstract:
Sounds in different frequency range are generated from the rear, top and/or front face of the musical tone apparatus, sounds are generated and spread in all directions around the musical tone apparatus, and the tones sound very realistically acoustic.Vibration of the sound board does not resonate, tones generated from the sound board are not changed unintentionally, and tones of real acoustic musical instruments are realized.Vibration from the sound board is not directly transferred to the whole musical tone apparatus, by means of not allowing the sound board to touch the body of the musical tone apparatus and of pressing and fixing the soundboard to the attachment component with the thickness of the attachment component compressed.
Abstract:
An on-vehicle controller performs smart control for transmitting a transmission request signal to a predetermined area and for unlocking a door of a vehicle based on a return signal transmitted by a portable device receiving the transmission request signal, security control for providing a warning if improper conduct to the vehicle is detected, remote keyless entry control for locking or unlocking the door according to a manual operation signal, which is transmitted from the portable device according to button manipulation thereof, and immobilizer control for permitting an engine start if an identification code transmitted from a transponder of the portable device coincides with an identification code stored in the vehicle. If a mode switch is switched to an off position, the controller is switched to a power-saving mode for performing only the immobilizer control.
Abstract:
An encoder, decoder, encoding method, and decoding method enabling acquisition of high-quality decoded signal in scalable encoding of an original signal in first and second layers even if the second or upper layer section performs low bit-rate encoding. In the encoder, a spectrum residue shape codebook (305) stores candidates of spectrum residue shape vectors, a spectrum residue gain codebook (307) stores candidates of spectrum residue gains, and a spectrum residue shape vector and a spectrum residue gain are sequentially outputted from the candidates according to the instruction from a search section (306). A multiplier (308) multiplies a candidate of the spectrum residue shape vector by a candidate of the spectrum residue gain and outputs the result to a filtering section (303). The filtering section (303) performs filtering by using a pitch filter internal state set by a filter state setting section (302), a lag T outputted by a lag setting section (304), and a spectrum residue shape vector which has undergone gain adjustment.
Abstract:
A pitch frequency estimation device capable of estimating a pitch frequency precisely while reducing the computational complexity required for the estimation of the pitch frequency. In this device, a spectrum extraction unit (104) extracts a pitch-harmonized spectrum from a voice spectrum. A spectral average calculation unit (106) calculates the average of the power of the pitch-harmonized spectra extracted by the spectrum extraction unit (104), in a manner to individually correspond to a plurality of pitch frequency candidates. An estimation unit estimates the pitch frequency by using the average valve calculated by the spectral average calculation unit (106).
Abstract:
A pressure sensor comprising a plurality of sensor parts arranged in matrix. A first electrode being connected with first wiring and a second electrode being connected with second wiring are disposed oppositely through a cavity part in the sensor part. The second electrode bends to the first electrode side in response to a pressure from a specimen and touches the first electrode upon application of a pressure of a specified level or above. When the specimen is pressed against a pressure detecting region, both electrodes touch each other at a sensor part corresponding to a protrusions of the specimen and are separated at a sensor part corresponding to a recess. When a scanning signal is fed from a scanning circuit to one wiring and presence of a signal flowing through the second wiring is detected by a sensing circuit, a pressure being applied to each sensor part can be detected. Furthermore, the shape is detected by feeding the scanning signal from the scanning circuit to each first wiring sequentially and scanning the pressure detecting region generally.
Abstract:
Multichannel signal coding equipment is provided for presenting a high quality sound at a low bit rate. In the multichannel signal coding equipment (2), a down mixpart (10) generates monaural reference channel signals for N number of channel signals. A coding part (11) codes the generated reference channel signal. A signal analyzing part (12) extracts parameters indicating characteristics of each of the N number of channel signals. An MUX part (13) multiplexes the coded reference channel signal with the extracted parameters.
Abstract:
There is disclosed a scalable encoding device capable of increasing the conversion performance from a narrow-band LSP to a wide-band LSP (prediction accuracy when predicting the wide-band LSP from the narrow-band LSP) and realizing a high-performance band scalable LSP encoding. The device includes a conversion coefficient calculation unit (109) for calculating a conversion coefficient by using a narrow-band quantization LSP which has been outputted from a narrow-band LSP encoding unit (103) and a wide-band quantization LSP which has been outputted from a wide-band LSP encoding unit (107). The wide-band LSP encoding unit (107) multiplies the narrow-band quantization LSP with the conversion coefficient inputted from the conversion coefficient calculation unit (109) so as to convert it into a wide-band LSP. The wide-band LSP is multiplied by a weight coefficient to calculate a prediction wide-band LSP. The wide-band LSP encoding unit (107) encodes an error signal between the obtained prediction wide-band LSP and the wide-band LSP so as to obtain a wide-band quantization LSP.
Abstract:
The conventional error conceal processing generates a greatly fluctuating irregular sound which is unpleasant to ears and causes a remarkable echo effect and click noise. A notification signal detection unit (301) judges processing for an input frame. In case of an error frame, a sound detection unit (303) makes judgment whether a preceding non-error data frame is a sound signal. If it is a sound frame, a sound copying unit (304) generates a replacing frame. If it is a non-sound frame, a transient signal detection unit (305) judges whether it is an attack signal by the transient signal detection and selects an appropriate area from the preceding non-error frame.