Abstract:
An indirect printing system is disclosed having an intermediate transfer member (ITM) in the form of an endless belt that circulates during operation to transport ink images from an image forming station. Ink images are deposited on an outer surface of the ITM by one or a plurality of print bars. At an impression station, the ink images are transferred from the outer surface of the ITM onto a printing substrate. In some embodiments, the outer surface of the ITM 20 is maintained within the image forming station at a predetermined distance from the one or each of the print bars 10, 12, 14 and 16 by means of a plurality of support rollers 11, 13, 15, 17 that have a common flat tangential plane and contact the inner surface of the ITM. In some embodiments, the inner surface of the ITM is attracted to the support rollers, the attraction being such that the area of contact between the ITM and each support roller is greater on the downstream side than the upstream side of the support roller, referenced to the direction of movement of the ITM.
Abstract:
An indirect printing system is disclosed having an intermediate transfer member (ITM) in the form of an endless belt that circulates during operation to transport ink images from an image forming station. Ink images are deposited on an outer surface of the ITM by one or a plurality of print bars. At an impression station, the ink images are transferred from the outer surface of the ITM onto a printing substrate. In some embodiments, the outer surface of the ITM 20 is maintained within the image forming station at a predetermined distance from the one or each of the print bars 10, 12, 14 and 16 by means of a plurality of support rollers 11, 13, 15, 17 that have a common flat tangential plane and contact the inner surface of the ITM. In some embodiments, the inner surface of the ITM is attracted to the support rollers, the attraction being such that the area of contact between the ITM and each support roller is greater on the downstream side than the upstream side of the support roller, referenced to the direction of movement of the ITM.
Abstract:
Embodiments of the present invention relate to control apparatus and methods of a printing system, for example, comprising an intermediate transfer member (ITM) and to user-related features of a printing system. Some embodiments relate to regulation of a velocity and/or tension and/or length of the ITM. Some embodiments relate to regulation of deposition of ink on the moving ITM. Some embodiments regulate to apparatus configured to alert a user of one or more events related to operation of the ITM. Some embodiments relate to a time-line GUI for visualizing and/or manipulating queued print jobs which may be employed. Some embodiments relate to a reversed augmented reality GUI for visualization and/or control of the printing system. In some embodiments, a display screen is mounted to a printer housing and/or able to control access to moving parts of a printing system.
Abstract:
A flexible belt is disclosed for use in a printing system. The belt comprises an endless strip which, in use, travels along a continuous path. Formations are provided along the sides of the strip which are capable of engaging with lateral tracks to place the belt under lateral tension, the lateral tracks further serving to constrain the belt to follow the continuous path.
Abstract:
An intermediate transfer member (ITM) for use in a printing system to transport an ink image from an image forming station to an impression station for transfer of the ink image from the ITM onto a printing substrate, wherein the ITM is an endless flexible belt of substantially uniform width which, during use, passes over drive and guide rollers and is guided through at least the image forming station by means of guide channels that receive formations provided on both lateral edges of the belt, wherein the formations on a first edge differ from the formations on the second edge by being configured for providing the elasticity desired to maintain the belt taut when the belt is guided through their respective lateral channels.
Abstract:
A printing system for printing on a substrate, comprises a movable intermediate transfer member in the form of a flexible, substantially inextensible, belt guided to follow a closed path, an image forming station for depositing droplets of a liquid ink onto an outer surface of the belt to form an ink image, a drying station for drying the ink image on the belt to leave an ink residue film on the outer surface of the belt, first and second impression stations spaced from one another in the direction of movement of the belt, each impression station comprising an impression cylinder for supporting and transporting the substrate and a pressure cylinder carrying a compressible blanket for urging the belt against the substrate supported on the impression cylinder, and a transport system for transporting the substrate from the first impression station to the second impression station. The pressure cylinder of at least the first impression station is movable between a first position in which the belt is urged towards the impression cylinder to cause the residue film on the outer surface of the belt to be transferred onto the front side of the substrate supported on the impression cylinder, and a second position in which the belt is spaced from the impression cylinder to allow the ink image on the belt to pass through the first impression station and arrive intact at the second impression station for transfer onto the reverse side of the substrate supported on the second impression cylinder.
Abstract:
A printing process is disclosed which comprises directing droplets of an ink onto an intermediate transfer member to form an ink image, the ink including an organic polymeric resin and a coloring agent in an aqueous carrier, and the transfer member having a hydrophobic outer surface so that each ink droplet in the ink image spreads on impinging upon the intermediate transfer member to form an ink film. The ink is dried while the ink image is being transported by the intermediate transfer member by evaporating the aqueous carrier from the ink image to leave a residue film of resin and coloring agent. The residue film is then transferred to a substrate. The chemical compositions of the ink and of the surface of the intermediate transfer member are selected such that attractive intermolecular forces between molecules in the outer skin of each droplet and on the surface of the intermediate transfer member counteract the tendency of the ink film produced by each droplet to bead under the action of the surface tension of the aqueous carrier, without causing each droplet to spread by wetting the surface of the intermediate transfer member.
Abstract:
User-related features of a printing system are disclosed herein. Some embodiments relate to a time-line GUI for visualizing and/or manipulating queued print jobs which may be employed. Some embodiments relate to a reversed augmented reality GUI for visualization and/or control of the printing system. In some embodiments, a display screen is mounted to a printer housing and/or able to control access to moving parts of a printing system.
Abstract:
A flexible belt is disclosed for use in a printing system. The belt comprises an endless strip which, in use, travels along a continuous path. Formations are provided along the sides of the strip which are capable of engaging with lateral tracks to place the belt under lateral tension, the lateral tracks further serving to constrain the belt to follow the continuous path.
Abstract:
There are provided aqueous inkjet ink formulations comprising a solvent containing water and optionally a co-solvent, a water soluble or water dispersible polymeric resin and a colorant. The disclosed formulations are suitable for ink jet printing systems, and more particularly for indirect printing systems using an intermediate transfer member.