Abstract:
An optical lens module includes a lens assembly and a plastic barrel. The lens assembly includes a plurality of lens elements and is disposed in the plastic barrel. The plastic barrel includes an object-end portion, an image-end portion, an outer tube portion, an inner tube portion and at least one reflection reduction area. The image-end portion includes an image-end opening. The inner tube portion includes a plurality of parallel inner surfaces and a plurality of inclined inner surfaces, wherein the parallel inner surfaces are parallel to the central axis, and each of the inclined inner surfaces has an angle with the central axis. The reflection reduction area is disposed on one of the inclined inner surfaces closest to the image-end opening, wherein the reflection reduction area and the plastic barrel are integrally formed by an injection molding method.
Abstract:
An imaging lens element assembly includes a dual molded lens element. The dual molded lens element includes a transparent portion, a light absorbing portion and a step structure. The transparent portion, in order from a center to a peripheral region, includes an optical effective area and a transparent peripheral area, wherein an optical axis of the imaging lens element assembly passes through the optical effective area, and the transparent peripheral area surrounds the optical effective area. The light absorbing portion surrounds the optical effective area and is disposed on an object side of the transparent peripheral area and includes an object-end surface and an outer inclined surface. The object-end surface faces towards an object side of the light absorbing portion, and the outer inclined surface extends from the object-end surface to an image side of the light absorbing portion and is gradually far away from the optical axis.
Abstract:
This disclosure provides a lens assembly that has an optical path and includes a lens element and a light-blocking membrane layer. The lens element has an optical portion, and the optical path passes through the optical portion. The light-blocking membrane layer is coated on the lens element and adjacent to the optical portion. The light-blocking membrane layer has a distal side and a proximal side that is located closer to the optical portion than the distal side. The proximal side includes two extension structures and a recessed structure. Each of the extension structures extends along a direction away from the distal side, and the extension structures are not overlapped with each other in a direction in parallel with the optical path. The recessed structure is connected to the extension structures and recessed along a direction towards the distal side.
Abstract:
A plastic barrel includes an object-end portion, an image-end portion, an inner tube portion and a plurality of protrusions. The object-end portion includes an outer object-end surface, an object-end hole and an inner annular object-end surface. One side of the inner annular object-end surface is connected to the outer object-end surface and surrounds the object-end hole. The image-end portion includes an outer image-end surface, an image-end opening and an inner annular image-end surface. The inner annular image-end surface is connected to the outer image-end surface and surrounds the image-end opening. The inner tube portion connects the object-end portion and the image-end portion and includes a plurality of inclined surfaces. The protrusions are disposed at least on one of the inner annular object-end surface, the inner annular image-end surface and the inclined surfaces, wherein the protrusions are regularly arranged around the central axis of the plastic barrel.
Abstract:
A light-folding element includes an object-side surface, an image-side surface, a reflection surface and a connection surface. The reflection surface is configured to reflect imaging light passing through the object-side surface to the image-side surface. The connection surface is connected to the object-side, image-side and reflection surfaces. The light-folding element has a recessed structure located at the connection surface. The recessed structure is recessed from the connection surface an includes a top end portion, a bottom end portion and a tapered portion located between the top end and bottom end portions. The top end portion is located at an edge of the connection surface. The tapered portion has two tapered edges located on the connection surface. The tapered edges are connected to the top end and bottom end portions. A width of the tapered portion decreases in a direction from the top end portion towards the bottom end portion.
Abstract:
An imaging lens assembly includes a plastic barrel and a lens set, and the lens set is disposed in the plastic barrel. The plastic barrel includes an object-side outer surface, a first inner surface and a second inner surface. The lens set has an optical axis, and includes, in order from an object side to an image side thereof, at least one plastic lens element and a spacer. A light-absorbing coating is disposed on the plastic lens element. The spacer includes an object-side connecting surface and a relative surface. When the object-side connecting surface is connected with a neighboring object-side optical element, the relative surface is out of touch with the neighboring object-side optical element. There is an overlap between the second inner surface and the relative surface along a direction parallel to the optical axis.
Abstract:
An annular optical element includes an outer annular surface, an inner annular surface, a first side surface, a second side surface and a plurality of strip-shaped wedge structures. The outer annular surface surrounds a central axis of the annular optical element and includes at least two shrunk portions. The first side surface connects the outer annular surface and the inner annular surface. The second side surface connects the outer annular surface and the inner annular surface, wherein the second side surface is disposed correspondingly to the first side surface. The strip-shaped wedge structures are disposed on the inner annular surface, wherein each of the strip-shaped wedge structures is disposed along a direction from the first side surface towards the second side surface and includes an acute end and a tapered portion connecting the inner annular surface and the acute end.
Abstract:
A plastic barrel includes an object-end portion, an image-end portion, an inner tube portion and a plurality of protrusions. The object-end portion includes an outer object-end surface, an object-end hole and an inner annular object-end surface. One side of the inner annular object-end surface is connected to the outer object-end surface and surrounds the object-end hole. The image-end portion includes an outer image-end surface, an image-end opening and an inner annular image-end surface. The inner annular image-end surface is connected to the outer image-end surface and surrounds the image-end opening. The inner tube portion connects the object-end portion and the image-end portion and includes a plurality of inclined surfaces. The protrusions are disposed at least on one of the inner annular object-end surface, the inner annular image-end surface and the inclined surfaces, wherein the protrusions are regularly arranged around the central axis of the plastic barrel.
Abstract:
A camera module includes an imaging lens system, an image sensor and a plurality of light-folding elements. The imaging lens system is configured to focus imaging light onto an image surface. The image sensor is disposed on the image surface. The plurality of light-folding elements includes at least one image-side light-folding element disposed on an image side of the imaging lens system, and each of the light-folding elements is configured to fold the imaging light from an entrance optical path thereof to an exit optical path thereof. At least one light-shielding mechanism is arranged on at least one of the entrance light path and the exit light path of the at least one image-side light-folding element. The at least one light-shielding mechanism has a minimal opening, and the minimal opening surrounds the imaging light in the at least one of the entrance optical path and the exit optical path.
Abstract:
A composite light blocking sheet includes a first surface layer, a second surface layer, an inside substrate layer and a central axis. The first surface layer has a first opening and a first outer surface connected to the first opening. The second surface layer has a second opening and a second outer surface connected to the second opening. The inside substrate layer has a substrate opening and is disposed between the first surface layer and the second surface layer and connects the first surface layer and the second surface layer. The central axis is coaxial with the first opening, the second opening and the substrate opening. More than 95% of the first outer surface has a first gloss being GU1, more than 95% of the second outer surface has a second gloss being GU2, and the first gloss GU1 and the second gloss GU2 satisfy specific conditions.