Abstract:
An organic light-emitting display device according to one embodiment of the present disclosure includes a substrate, a thin-film transistor formed on the substrate, a planarization layer formed on the thin-film transistor, an organic light-emitting element formed on the planarization layer, the emitting element including an organic light-emitting layer and a cathode, and a lower auxiliary wiring between the organic light-emitting element and the planarization layer, the wiring electrically connected with the cathode.
Abstract:
A top-emission type light emitting display device and a corresponding manufacturing method are described. A device substrate has display area and non-display areas. In the display area are formed: a thin film transistor including an active layer, a gate electrode, a source electrode, and a drain electrode; and an organic light emitting element including an anode, an organic light emitting layer, and a cathode. In the non-display area a second voltage supply wire is formed on, and overlaps with, a first voltage supply wire. An anti-burning layer is disposed between the first voltage and the second voltage supply wires. The anti-burning layer is an insulation layer with the same thickness as a space sufficient to suppress burning of the wires in the overlapping region between the first voltage supply wire and the second voltage supply wire, thus improving reliability and manufacturing yield of the device.
Abstract:
An organic electroluminescent display device includes an organic electroluminescent display panel including top emission pixels to emit light toward a top side of a substrate and bottom emission pixels to emit light toward a bottom side of the substrate, the top emission pixels and the bottom emission pixels being formed such that corresponding ones thereof share a common transparent area, a scan driver for supplying a scan signal to scan lines each connected to selected ones of the top and bottom emission pixels, and a data driver for supplying a data voltage to data lines each connected to selected ones of the top and bottom emission pixels. The top emission pixels and the bottom emission pixels are formed on the substrate to alternate with each other on a pixel basis, on a scan line basis, or a data line basis.
Abstract:
Provided are an organic light emitting display device and a method for manufacturing the same. The organic light emitting display device includes a plurality of pixels, each including a set of sub pixels. Each of the sub pixels has an emissive area for emitting light and a transmissive area for passing the external light. At least two sub pixels are symmetrically arranged on each side of an auxiliary electrode, and share the auxiliary electrode.
Abstract:
An organic light emitting display device includes: a plurality of pixel regions. Each of the pixel regions includes: a first transistor configured to apply a data voltage on a first adjacent data line to a first node in response to a scan signal on the primary scan line; a second transistor configured to apply the data voltage on the first adjacent data line to the first node in response to a sensing signal on the secondary scan line; and a third transistor configured to detect a sensing voltage and apply the sensing voltage to a second adjacent data line, The data driver compares the sensing voltage and the data voltage and compensates for the data voltage of next frame, and the scan signal and the sensing signal are generated in different intervals of a single frame.
Abstract:
Provided are an organic light emitting display device and a method for manufacturing the same. The organic light emitting display device comprises at least a first pixel area and a second pixel area. A partition is disposed between the first pixel area and the second pixel area. An auxiliary electrode is disposed between the first pixel area and the second pixel area and over the partition. Additionally, a first conductive element is disposed over the first pixel area, the second pixel area, and the auxiliary electrode and the first conductive element is electrically connected to the auxiliary electrode.
Abstract:
An organic light emitting diode (OLED) display device is provided. The OLED display device includes a first transistor configured to supply a data voltage to a first node, a second transistor connected between the first node and a second node, a third transistor configured to supply a reference voltage to the third node, a fourth transistor configured to supply an initialization voltage to the second node, a fifth transistor configured to supply the reference voltage to the second node, a driving transistor configured to include a drain receiving a high-level source voltage, a source connected to the second node, and a gate connected to the third node, a first capacitor connected between the first node and the third node, a second capacitor connected between the second node and the third node, and an OLED configured to include an anode connected to the second node.