Abstract:
A display device includes a substrate having transmissive areas and a non-transmissive area disposed between the transmissive areas. A first pixel is provided in the non-transmissive area, and includes a first subpixel, a second subpixel and a third subpixel. A second pixel is disposed adjacent the first pixel in the non-transmissive area, and includes a third subpixel. The first pixel and the second pixel share the first subpixel and the second subpixel.
Abstract:
Disclosed is a display device for increasing an aperture ratio of a transmissive part. The display device includes data lines overlapping with one or more of the pixels emitting light to display an image. Each pixel includes subpixels arranged within the pixel along a same direction as the data lines. The display device further includes transmissive parts arranged in the first direction and corresponding to adjacent pixels. In addition to the data lines overlapping the pixels, the display device may include power lines and reference voltage lines parallel with the data lines and overlapping with the pixels. The display device may include scan lines and sensing lines arranged to cross the transmissive parts and data lines. As a result, the number of lines crossing the transmissive parts is reduced, thereby increasing an aperture ratio of the transmissive parts.
Abstract:
A top-emission type light emitting display device and a corresponding manufacturing method are described. A device substrate has display area and non-display areas. In the display area are formed: a thin film transistor including an active layer, a gate electrode, a source electrode, and a drain electrode; and an organic light emitting element including an anode, an organic light emitting layer, and a cathode. In the non-display area a second voltage supply wire is formed on, and overlaps with, a first voltage supply wire. An anti-burning layer is disposed between the first voltage and the second voltage supply wires. The anti-burning layer is an insulation layer with the same thickness as a space sufficient to suppress burning of the wires in the overlapping region between the first voltage supply wire and the second voltage supply wire, thus improving reliability and manufacturing yield of the device.
Abstract:
An organic light emitting diode display device, comprises: a thin film transistor on a substrate; a first insulating layer on the thin film transistor; a connecting electrode connected to the thin film transistor and a first auxiliary electrode on the first insulating layer; a second insulating layer on the connecting electrode and the first auxiliary electrode; an anode connected to the connecting electrode and a second auxiliary electrode spaced apart from the anode and connected to the first auxiliary electrode on the second insulating layer; a bank layer having a first contact hole exposing the anode and a second contact hole exposing the second auxiliary electrode on the anode and the second auxiliary electrode; an organic emitting layer on the anode in the first contact hole; and a cathode electrically connected to the second auxiliary electrode on the organic emitting layer.
Abstract:
A gate driver includes a plurality of driving units each including a first sub driving unit and a second sub driving unit, wherein output terminals of the first and second sub driving units are connected to first and second sub gate lines, respectively, and first and second sub outputs that are the outputs of the first and second sub driving units are respectively transferred to gate terminals of a first switching transistor and a second switching transistor formed in a pixel area of a display area, and wherein drain and source terminals of the first switching transistor are respectively connected to drain and source terminals of the second switching transistors.
Abstract:
Provided are a display device and a method of manufacturing the same. A display device includes a coplanar thin-film transistor and a capacitor. The coplanar thin-film transistor comprises a gate electrode, an active layer including an oxide semiconductor, a source electrode and a drain electrode. The capacitor comprises a lower electrode, intermediate electrode and upper electrode. And the lower electrode is comprised of the same material as the active layer, and is conductivized. Also, the upper electrode is connected to the lower electrode. By using the conductivized lower electrode, the capacitor is configured to operate as multiple capacitors. Thus, the size of the capacitor is reduced, and sufficient capacitance may be secured with the capacitor with a smaller area. In this way, the area of each sub-pixel in the display device may be reduced, thereby achieving high resolution.
Abstract:
An organic light emitting diode (OLED) display device including a first transistor configured to supply a data voltage to a first node according to a scan signal; a first capacitor connected to the first node at one end of the first capacitor, and connected to a second node at the other end; a second transistor configured to supply a reference voltage to the second node according to a sensing signal; a driving transistor including a drain electrode receiving a high-level source voltage or an initial voltage, a gate electrode connected to the second node, and a source electrode connected to a third node; and an OLED including a cathode electrode receiving a low-level source voltage and an anode electrode connected to the third node.
Abstract:
An OLED display device is provided. The OLED display device includes a first transistor connected to a data line and a first node; a second transistor connected to the first node and a second node; a third transistor connected to a reference voltage terminal and a third node; a fourth transistor connected to an initialization voltage terminal and the second node; a fifth transistor connected to the reference voltage terminal and the second node; a driving transistor; and an OLED connected to a low-level power supply voltage terminal and the second node. The driving transistor has a source connected to the second node, a gate connected to the third node, and a drain connected to a high-level power supply voltage terminal.
Abstract:
An organic light emitting display device includes: a plurality of pixel regions. Each of the pixel regions includes: a first transistor configured to apply a data voltage on a first adjacent data line to a first node in response to a scan signal on the primary scan line; a second transistor configured to apply the data voltage on the first adjacent data line to the first node in response to a sensing signal on the secondary scan line; and a third transistor configured to detect a sensing voltage and apply the sensing voltage to a second adjacent data line, The data driver compares the sensing voltage and the data voltage and compensates for the data voltage of next frame, and the scan signal and the sensing signal are generated in different intervals of a single frame.
Abstract:
A display device includes a substrate having transmissive areas and a non-transmissive area disposed between the transmissive areas. A first pixel is provided in the non-transmissive area, and includes a first subpixel, a second subpixel and a third subpixel. A second pixel is disposed adjacent the first pixel in the non-transmissive area, and includes a third subpixel. The first pixel and the second pixel share the first subpixel and the second subpixel.