Abstract:
A display device is discussed, which has improved transmittance and relieves a visual difference in a camera region, even though a camera is provided in an active region, by changing the configuration of a substrate in a region corresponding to the camera.
Abstract:
Disclosed is a display device comprising: a substrate comprising an active region and a non-active region; a light emitting device that emits light in the active area of the substrate; a touch sensor in the active area of the substrate that senses touch of the display device, the touch sensor including a plurality of conductive layers arranged in a stacking sequence; and a plurality of routing lines in the non-active region of the substrate that are connected to the touch sensor, each of the plurality of routing lines including a plurality of routing layers, each of the plurality of routing layers made of a same material as a corresponding one of the plurality of conductive layers included in the touch sensor, and the plurality of routing layers arranged in a same stacking sequence as the stacking sequence of the plurality of conductive layers of the touch sensor.
Abstract:
An organic light emitting display can include light emitting elements disposed on a substrate; an encapsulation unit disposed on the light emitting elements; touch sensors disposed on the encapsulation unit; first conductive lines connected to the touch sensors; second conductive lines connected to the first conductive lines; and at least one insulating film formed of at least one of an inorganic film or an organic film and disposed between the first and second conductive lines.
Abstract:
Disclosed are an organic light emitting display having touch sensors, which may achieve process simplification and cost reduction, and a method of fabricating the same. The organic light emitting display includes a plurality of touch electrodes disposed on an encapsulation unit disposed so as to cover light emitting elements, the touch electrodes are formed through a low-temperature deposition process and may thus have amorphous characteristics so as to prevent damage to an organic light emitting layer during formation of the touch electrodes, and the touch electrodes are disposed on the encapsulation unit without a separate attachment process and may thus simplify the overall process and reduce manufacturing costs.
Abstract:
A method for fabricating an in-plane switching (IPS) type liquid crystal display (LCD) device according to an embodiment includes forming gate lines arranged in a first direction and data lines arranged in a second direction substantially perpendicular to the first direction, the gate lines and the data lines defining pixel regions on an array substrate; forming a storage electrode on the array substrate; forming common electrodes extending across each pixel region; forming pixel electrodes arranged to be substantially parallel to the common electrodes, the common electrodes and the pixel electrodes being alternately arranged to generate an in-plane field in each pixel region; and forming thin film transistors (TFTs) at intersection areas of the gate lines and the data lines, each TFT including a source electrode connected to the corresponding data line, a drain electrode connected to the corresponding pixel electrode and a gate electrode.
Abstract:
An array substrate for a liquid crystal display device includes a substrate, a gate line and a data line on the substrate and crossing each other to define a pixel region, a thin film transistor connected to the gate line and the data line, a first passivation layer on the thin film transistor and having a first unevenness structure at its top surface, an auxiliary unevenness layer on the first passivation layer and having a first roughness structure at its top surface, and a reflector on the auxiliary unevenness layer, the reflector having a second unevenness structure due to the first unevenness structure of the first passivation layer and a second roughness structure due to the first roughness structure of the auxiliary unevenness layer, the second roughness structure having smaller patterns than the second unevenness structure.