Abstract:
The present disclosure relates to a liquid crystal display device and a fabricating method thereof. The liquid crystal display device includes: first and second substrates bonded to each other; gate lines aligned on the first substrate; a data line and a common line on the first substrate; a large pixel electrode disposed at the intersecting point between the lines; a TFT at the intersecting point between the gate line and the data line; a protrusion pattern on the gate line; a passivation layer on the first substrate; branched common electrodes on the passivation layer; a pixel electrode connection pattern on the passivation layer; a black matrix and color filter layer on the second substrate; a column spacer on the second substrate; and a liquid crystal layer at between the substrates.
Abstract:
An array substrate for a narrow bezel type liquid crystal display device and method of manufacturing the same are provided. The array substrate includes: gate lines (GLs) on a substrate, the substrate including a display area and first to fourth non-display areas at respective sides, pixel regions, a gate insulating layer (GIL) on the GLs, a plurality of data lines on the GIL and crossing the GLs, a plurality of gate auxiliary lines parallel to the data lines and connected to respective GLs, an auxiliary line in the third non-display area with a first layer under the GIL and a second layer on the GIL, the first layer contacting the second layer through a first auxiliary contact hole in the GIL, a thin film transistor in each pixel region and connected to the GLs and data lines, and a pixel electrode connected to each thin film transistor.
Abstract:
An organic light emitting diode display device can include a driving transistor, a first transistor connected to the driving transistor, a second transistor connected between a data voltage and the driving transistor, a third transistor connected between a high level voltage and the driving transistor, a fourth transistor connected to the driving transistor, a fifth transistor connected between an initial voltage and the driving transistor, a sixth transistor connected to the initial voltage, a seventh transistor connected to the high level voltage, an eighth transistor connected to a reference voltage, a storage capacitor connected between the driving transistor and the eighth transistor, and a light emitting diode connected between a low level voltage and the fourth transistor.
Abstract:
An array for an in-plane switching (IPS) mode liquid crystal display device includes a gate line formed on a substrate to extend in a first direction, a common line formed on the substrate to extend in the first direction, a data line formed to extend in a second direction, a thin film transistor formed at an intersection between the gate line and the data line, wherein the thin film transistor includes a gate line, a gate insulating layer, an active layer, a source electrode, and a drain electrode, a passivation film formed on the substrate including the thin film transistor, a pixel electrode formed on the passivation film located on a pixel region defined by the gate line and the data line, the pixel electrode being electrically connected to the drain electrode, a common electrode formed on the passivation film, and a common electrode connection line connected to the common electrode and the common line, wherein the common electrode connection line overlaps with the common line and the drain electrode.
Abstract:
The present disclosure relates to a liquid crystal display device and a fabricating method thereof. The liquid crystal display device includes: first and second substrates bonded to each other; gate lines aligned on the first substrate; a data line and a common line on the first substrate; a large pixel electrode at the intersecting point between the lines; a TFT at the intersecting point between the gate line and the data line; a protrusion pattern on the gate line; a passivation layer on the first substrate; branched common electrodes on the passivation layer; a pixel electrode connection pattern on the passivation layer; a black matrix and color filter layer on the second substrate; a column spacer on the second substrate; and a liquid crystal layer at between the substrates.
Abstract:
A liquid crystal display device includes m/2 data lines and 2n gate lines that intersect each other to define m×n sub-pixels which have first to fourth colors and are arranged in a stripe form. A first pixel, including first to fourth sub-pixels, and a second pixel, including fifth to eighth sub-pixels, are alternately arranged in column and row directions between first and second gate lines such that the first to eighth sub-pixels are arranged in two columns between every two data lines. Connection between the first sub-pixel and the first data line, between the second and third sub-pixels and the second data line, between the fourth and sixth sub-pixels and the third data line, between the fifth and eighth sub-pixels and the fourth data line, and between the seventh sub-pixel and the fifth data line is accomplished.
Abstract:
A method for fabricating an in-plane switching (IPS) type liquid crystal display (LCD) device according to an embodiment includes forming gate lines arranged in a first direction and data lines arranged in a second direction substantially perpendicular to the first direction, the gate lines and the data lines defining pixel regions on an array substrate; forming a storage electrode on the array substrate; forming common electrodes extending across each pixel region; forming pixel electrodes arranged to be substantially parallel to the common electrodes, the common electrodes and the pixel electrodes being alternately arranged to generate an in-plane field in each pixel region; and forming thin film transistors (TFTs) at intersection areas of the gate lines and the data lines, each TFT including a source electrode connected to the corresponding data line, a drain electrode connected to the corresponding pixel electrode and a gate electrode.