Abstract:
An apparatus and method for performing procedures (protocols) of a PDCP (Packet Data Convergence Protocol) layer and an RLC (radio layer in an E-UMTS (Evolved Universal Mobile Telecommunications System) which has evolved from UMTS, among radio protocols of a mobile communication system. The PDCP layer performs ciphering on data (i.e., PDCP SDU) received from an upper layer, generates an indicator discriminating ciphered data and non-ciphered data (i.e., an ROHC feedback packet directly generated by the PDCP layer), and transmits the same to a lower layer (i.e., MAC layer). A PDCP SN (Sequence Number) is defined as an algorithm for ciphering the data in the PDCP layer to perform ciphering in the PDCP layer.
Abstract:
Disclosed is the radio (wireless) communication system providing a radio communication service and the terminal, and more particularly, a method of handling time alignment command during a random access procedure in an Evolved Universal Mobile Telecommunications System (E-UMTS) evolved from the Universal Mobile Telecommunications System (UMTS) or a Long Term Evolution (LTE) system is provided.
Abstract:
A method of performing a random access channel (RACH) procedure between a mobile terminal and a network includes the steps of detecting whether a random access response (RAR) is received from the network within a certain time period, the RAR including information about a random access channel (RACH) preamble transmitted to the network; and if the RAR is not received within the certain time period or if the information about the transmitted RACH preamble included in the RAR does not match the transmitted RACH preamble, performing a first procedure to detect failures in the RACH procedure; and if the RAR is received within the certain time period and if the information about the transmitted RACH preamble included in the RAR matches the transmitted RACH preamble, performing a second procedure to detect failures in the RACH procedure.
Abstract:
According to one embodiment, a method for maintaining a communication between a mobile terminal and a network in a mobile communication system includes: determining whether a state of the mobile terminal is in an unsynchronized state while maintaining a radio resource control (RRC) connected state with the network; performing a random access channel (RACH) procedure for a synchronized state if it is determined that the state of the mobile terminal is in the unsynchronized state while maintaining the RRC connected state with the network; and after performing the RACH procedure, transitioning from the synchronized state to the unsynchronized state with the network while maintaining the RRC connected state with the network when a timer expires.
Abstract:
A cell selection method where, if a hierarchical cell structure (HCS) is used, a first ranking procedure is performed if the UE has low mobility, and a second ranking procedure is performed if the UE has high mobility. When the UE has low mobility, the first ranking procedure is performed for all measured cells that have a highest HCS priority among those cells that fulfill a criterion S and a criterion H≧0, or the ranking procedure is performed for all measured cells regardless of HCS priorities if no cell fulfills the criterion S and the criterion H≧0. When the UE has high mobility, the second ranking procedure is performed for all measured cells, and if there are cells with lower HCS priority than the serving cell that fulfills the criterion S and the criterion H≧0, the ranking procedure is performed for all cells that have the highest HCS priority.
Abstract:
The present invention relates to a wireless communication system and a user equipment (UE) providing wireless communication services, and more particularly, a method of preventing transmission error of data while maintaining its security and a method of controlling an access of a Relay Node (RN) to a Donor eNB (DeNB) and an access of the UE to the RN during a process of transmitting and receiving user data when the RN as a radio network node is connected to the DeNB in an Evolved Universal Mobile Telecommunications System (E-UMTS), a Long Term Evolution (LTE) system, and a LTE-Advanced (LTE-A) system that have evolved from a Universal Mobile Telecommunications System (UMTS).
Abstract:
Disclosed is the radio (wireless) communication system providing a radio communication service and the terminal, and more particularly, a method of handling time alignment command during a random access procedure in an Evolved Universal Mobile Telecommunications System (E-UMTS) evolved from the Universal Mobile Telecommunications System (UMTS) or a Long Term Evolution (LTE) system is provided.
Abstract:
A method of performing a random access channel (RACH) procedure between a mobile terminal and a network includes the steps of detecting whether a random access response (RAR) is received from the network within a certain time period, the RAR including information about a random access channel (RACH) preamble transmitted to the network; and if the RAR is not received within the certain time period or if the information about the transmitted RACH preamble included in the RAR does not match the transmitted RACH preamble, performing a first procedure to detect failures in the RACH procedure; and if the RAR is received within the certain time period and if the information about the transmitted RACH preamble included in the RAR matches the transmitted RACH preamble, performing a second procedure to detect failures in the RACH procedure.
Abstract:
A device and method for receiving, by a mobile terminal, system information from a base station. The method includes: receiving a block of first system information from the base station via a broadcast channel configured to broadcast only system information; and receiving a plurality of blocks of second system information from the base station via a downlink shared channel configured to carry system information and other data, one of the plurality of blocks of second system information including scheduling information.
Abstract:
Disclosed is the radio (wireless) communication system providing a radio communication service and the terminal, and more particularly, a method of handling time alignment command during a random access procedure in an Evolved Universal Mobile Telecommunications System (E-UMTS) evolved from the Universal Mobile Telecommunications System (UMTS) or a Long Term Evolution (LTE) system is provided.