Abstract:
The method for processing a multiview video signal according to the present invention acquires motion information generated by predictively coding a picture of a reference point, acquires motion information on a part of a block of the picture from among the motion information generated by predictively coding the picture of a non-reference point, and compresses the motion information acquired for every picture of the reference point and non-reference point and stores the compressed motion information.
Abstract:
The present invention relates to an image encoding method and an image decoding method. An image encoding method according to the present invention comprises: a step of determining motion information of a current block; and a step of transmitting information for inducing the motion information, wherein the step of determining motion information of the current block determines the motion information of the current block by reusing motion information of a reference block.
Abstract:
A method for processing a video signal according to the present invention comprises the steps of: determining a motion vector list comprising at least one of a spatial motion vector, a temporal motion vector, and a mutation vector as a motion vector candidate of a target block; extracting motion vector identification information for specifying the motion vector candidate to be used as a predicted motion vector of the target block; setting the motion vector candidate corresponding to the motion vector identification information as the predicted motion vector of the target block; and performing motion compensation based on the predicted motion vector. The present invention forms the motion vector candidate and derives the motion vector of the target and derives the motion vector of the target block therefrom, thus enabling a more accurate prediction of the motion vector, and thereby reduces the amount of transmitted residual data and improves coding efficiency.
Abstract:
According to the present invention, an inter-view motion vector of a current coding unit is acquired using parallel processing information, and a motion vector of a current prediction unit in the current coding unit is acquired in parallel using the inter-view motion vector of the current coding unit. The present invention relates to a method and device for processing a video signal, wherein a motion vector prediction value of the current prediction unit is acquired by comparing output order information of a reference picture corresponding to the current prediction unit and output order information of a reference picture corresponding to a corresponding block. According to the present invention, through a parallel processing step, a multi-view point video image can be quickly restored, and the accuracy of the motion vector prediction value can be increased using motion information corresponding to the reference picture of the corresponding block of a different view point from the current prediction unit.
Abstract:
The video signal decoding method according to the present invention involves acquiring weighting-value predicting data of a neighboring view texture block corresponding to the current view texture block, deriving weighting-value predicting data of the current view texture block by using the weighting-value predicting data of the neighboring view texture block, and subjecting the current view texture block to weighting-value compensation by using the derived weighting-value predicting data.
Abstract:
According to the present invention, a method of processing a video signal includes the steps of: receiving the depth data corresponding to a given block containing present pixels; determining a variation of the depth data; comparing the variation of the depth data with a predetermined value; if the variation is less than the predetermined value, coding the present pixels by using a first partial filter, and if the variation is greater than the predetermined value, coding the present pixels by using a second partial filter; wherein the second partial filter is applied to a wider range than the first partial filter. Accordingly the image quality of improved; the complexity according to the filter application is reduced; and at the same time variable filtering may improve the coding efficiency.
Abstract:
The present invention encodes a warp map by using a video codec such as a multi-view texture image by a warp converter, and decodes a warp map by using a video codec such as a multi-view texture image by using a warp inverter. The present invention may incur less additional costs because it does not use a dedicated warp map coder. In addition, the present invention may convert a warp map by using a warp map converter and send the converted map to an encoder and invert decoded warp map information by using a warp map inverter so that the warp map is encoded and decoded by using a video codec such as a multi-view texture image. In addition, it is possible to increase compatibility by enabling various kinds of supplementary data to be used. In addition, it is possible to increase technique compatibility by simply applying a warp map scheme to a 3D video coding technique using a depth map.
Abstract:
A polygon unit-based image processing method, and a device for the same are disclosed. Specifically, a method for decoding an image on the basis of a polygon unit can comprise the steps of: deriving a motion vector predictor for a polygon apex forming the polygon unit; deriving a motion vector for the polygon apex on the basis of a motion vector difference for the polygon apex and the motion vector predictor; and deriving a prediction sample for the polygon unit from a division unit, which is specified by the motion vector, in a reference picture.
Abstract:
An image decoding method performed by a decoding apparatus according to the present invention comprises the steps of: generating a reconstruction area for a target area within a current picture; deriving a predetermined plurality of basic filters for the target area; updating at least one basic filter among the plurality of basic filters; receiving weight information for each of the basic filters; determining a merge filter for the target area on the basis of the basic filters and the weight information; and generating a modified reconstruction area by performing filtering on the target area on the basis of the filter coefficient of the determined merge filter. The present invention allows updating with filter information suitable for improving the visual quality of the target area and can thereby improve the accuracy of filtering and overall coding efficiency.
Abstract:
An image decoding method according to the present invention comprises the steps of: deriving quantized transform coefficients by unit of sub-blocks in a transform unit on the basis of residual information included in a bitstream; deriving transform coefficients on the basis of the quantized transform coefficients; generating a residual sample on the basis of the transform coefficients; generating a prediction sample on the basis of an inter prediction or an intra prediction; and restoring an image on the basis of the residual sample and the prediction sample. According to the present invention, a quantity of data required for a residual signal can be reduced, and an overall coding efficiency can be improved.