Sacrificial Positive Electrode Material with Reduced Gas Generation and Method of Preparing Thereof

    公开(公告)号:US20230128140A1

    公开(公告)日:2023-04-27

    申请号:US17915607

    申请日:2022-02-09

    Abstract: A disclosure sacrificial positive electrode material with reduced gas generation and a method of preparing the same are disclosed herein. In some embodiments, a method includes calcining a mixture of lithium oxide (Li2O) and cobalt oxide (CoO) in an atmosphere containing an inert gas and oxygen gas and having a relative humidity of 20% or less, wherein the oxygen gas is at a partial pressure of 1% or less, to prepare a lithium cobalt metal oxide represented by Chemical Formula (1): LixCo(1-y)MyO4-zAz  [Chemical Formula 1] M is at least one selected from the group consisting of Ti, Al, Zn, Zr, Mn and Ni, A is a halogen, x, y and z are 5≤x≤7, 0≤y≤0.4, and 0≤z≤0.001. A battery having the sacrificial positive electrode material can have reduced gas generation in the electrode assembly at the time of charging the battery, and thus the stability and life of the battery are improved.

    Sacrificial Positive Electrode Material and Lithium Secondary Battery Comprising the Same

    公开(公告)号:US20230115280A1

    公开(公告)日:2023-04-13

    申请号:US17914928

    申请日:2022-02-10

    Abstract: A sacrificial positive electrode material, a positive electrode comprising the same, and a lithium secondary battery having the positive electrode are disclosed herein. In some embodiments, a sacrificial positive electrode material includes a lithium cobalt oxide represented by the following Chemical Formula 1, wherein the sacrificial positive electrode active material has a defect formation energy of metal (M) of −4.0 to −8.5 eV, calculated using density functional theory (DFT): LixCo(1-y)MyO4   [Chemical Formula 1] M is at least one selected from the group consisting of Al, Fe, Zn, Ti, W, Mg, Ge and Si, pa x and y are 5≤x≤7 and 0.05≤y≤0.6. When the defect formation energy of the metal is controlled within a specific range, a high initial charging/discharging efficiency is realized during initial charging/discharging, and the amount of gas additionally generated at the later time of charging/discharging is reduced. Thus, stability and the charging/discharging performance of a battery is improved.

    Electrode and secondary battery including the same

    公开(公告)号:US12266800B2

    公开(公告)日:2025-04-01

    申请号:US17598617

    申请日:2020-09-28

    Abstract: An electrode includes an electrode active material layer, wherein the electrode active material layer includes an electrode active material and a conductive agent, wherein the conductive agent includes a first conductive agent and a second conductive agent, wherein the first conductive agent includes a secondary particle in which a plurality of graphene sheets are arranged in different directions and a portion of one graphene sheet is connected to a portion of adjacent another graphene sheet, the second conductive agent includes a carbon nanotube structure in which 2 to 5,000 single-walled carbon nanotube units are bonded to each other, and the carbon nanotube structure is included in an amount of 0.01 wt % to 0.5 wt % in the electrode active material layer. A secondary battery including the electrode is also provided.

Patent Agency Ranking