摘要:
A method for stretching nonwoven sheet material in the cross-machine direction includes coursing a nonwoven sheet material through a deformable nip, the nip being formed between two rotating stretch surfaces having intermeshing peaks and troughs, the surfaces of the peaks and troughs being covered with a deformable material, and contemporaneously pressing the stretch surfaces together while rotating them, such that as the nonwoven material travels through the nip, the nip deforms from an initial flat formation into a convoluted formation.
摘要:
An apparatus and a method for the melt extrusion of a molten thermoplastic polymer, e.g., as fibers and nonwoven webs, which apparatus and method utilize ultrasonic energy to assist in the melt-extrusion process. The apparatus includes a die housing which defines a chamber adapted to receive the molten thermoplastic polymer and a means for applying ultrasonic energy to a portion of the molten thermoplastic polymer. The die housing includes a chamber adapted to receive the molten thermoplastic polymer, an inlet orifice adapted to supply the chamber with the molten thermoplastic polymer, and an extrusion orifice adapted to receive the molten thermoplastic polymer from the chamber and extrude the polymer. The means for applying ultrasonic energy is located within the chamber. The method involves supplying a molten thermoplastic polymer and extruding the molten thermoplastic polymer through an extrusion orifice in the foregoing apparatus to form a threadline. The means for applying ultrasonic energy is at least partially surrounded by molten thermoplastic polymer and is adapted to apply the ultrasonic energy to molten thermoplastic polymer as it passes into the extrusion orifice. While extruding the molten thermoplastic polymer, the means for applying ultrasonic energy is excited with ultrasonic energy. The resulting threadline then is attenuated to form a fiber. The means for applying the ultrasonic energy may be an ultrasonic horn.
摘要:
A melt-extrudable polymeric strand with altered physical properties formed by extruding an emulsion comprising a melt-extrudable polymer and an immiscible component while subjecting the emulsion to ultrasonic energy. In one embodiment, a melt-extrudable polymeric strand has a plurality of fissures in the surface of the strand such that the strand has a B.E.T. surface area to six times the B.E.T. surface area of an otherwise identical strand lacking the plurality of fissures. Desirably, the strand of this embodiment has a B.E.T. surface area of within a range from about 0.10 to about 0.18 m.sup.2 /g. In a method for making such a strand, the immiscible component of the extrudable emulsion comprises a substance that is an expandable gas upon extrusion. The expandable gas forms the fissures in the strand. According to another aspect, a polymeric strand has a continuous phase which is a melt-extrudable polymer and a disperse phase which is immiscible with the continuous phase. The disperse phase forms discrete pockets of material in the extruded strand and can include a variety of components which alter the physical properties of the strand. Suitable components of the disperse phase include water, aqueous solutions, oils, low melting point metals, and other physical property altering materials.