Abstract:
A deactivation valve lifter includes a lifter body. The lifter body has a first end configured for engaging a cam of an engine and at least one annular pin chamber. A pin housing includes a pin housing bottom. The pin housing bottom defines at least one pin stop aperture and a radially directed pin bore. A deactivation pin assembly is disposed within the pin bore and includes pin members. The pin housing is concentrically disposed within the lifter body. A portion of each pin member may be disposed within the annular pin chamber to thereby selectively couple and decouple the lifter body to the pin housing. A drain aperture defined by the pin housing bottom extends from the pin bore to an outside surface of the pin housing. A stop pin is disposed in the at least one pin stop aperture for limiting the inward motion of the pin members.
Abstract:
A deactivation hydraulic valve lifter which includes an elongate lifter body having a substantially cylindrical outer surface and an inner wall, the inner wall defining at least one annular pin chamber therein. The outer surface defining at least one annular groove in fluid communication with a high-pressure oil gallery of an engine, the lifter body having a lower end configured for engaging cam of the engine.
Abstract:
A deactivation hydraulic valve lifter includes an elongate lifter body having a substantially cylindrical inner wall. The inner wall defines at least one annular pin chamber therein. The lifter body has a first end configured for engaging a cam of an engine. An elongate pin housing includes a substantially cylindrical pin housing wall and pin housing bottom. The pin housing wall includes an inner surface and an outer surface. The pin housing bottom defines a radially directed pin bore therethrough. The pin housing is concentrically disposed within the inner wall of the lifter body such that the outer surface of the pin housing wall is adjacent to at least a portion of the inner wall of the lifter body. A plunger having a substantially cylindrical plunger wall with an inner surface and an outer surface is concentrically disposed within the pin housing such that the outer surface of the plunger wall is adjacent to at least a portion of the inner surface of the pin housing wall. A deactivation pin assembly is disposed within the pin bore and includes two pin members. The pin members are biased radially outward relative to each other. A portion of each pin member is disposed within the annular pin chamber to thereby couple the lifter body to the pin housing. The pin members are configured for moving toward each other when the pin chamber is pressurized, thereby retracting the pin members from within the annular pin chamber and decoupling the lifter body from the pin housing.
Abstract:
A valve actuation assembly is disclosed for use on an internal combustion engine. Retention of the roller shafts within the lifter body is through a wire c-ring which engages circumjacent internal and external ring grooves located in the shaft opening in the lifter body and on the outer circumference of the roller shaft. The c-shaped wire ring is formed so that, in its free state, it has an outside diameter larger than the groove in the shaft opening but, in an elastically collapsed state, its outside diameter is no larger than the shaft diameter. When the roller-shaft assembly is installed in the shaft opening of the lifter body, the c-shaped wire ring is elastically collapsed into the shaft groove. As such, the shaft and wire ring may be inserted into the shaft openings in the lifter body with little effort until the shaft reaches a position at which the shaft and opening grooves come into registry, allowing the wire ring to expand outwardly into the shaft opening groove in an attempt to reach its free-state shape. Ring expansion is limited by the total depth of the shaft opening groove being less than the diameter of the wire resulting in an interference between the seated wire and the shaft groove which locates and retains the shaft in the shaft opening of the lifter body.
Abstract:
There is described a cartridge for receiving test elements sensitive to improper orientation. A key and keyway are provided on the inside surface of a wall of the cartridge and on the test element in an asymmetric disposition, so that test elements can be inserted only with a proper orientation.