Abstract:
Methods, systems, and apparatuses are described for cooling electronic devices. The electrical device includes an integrated circuit die (IC) having opposing first and second surfaces, a plurality of interconnects on the second surface of the IC die that enable the IC die to be coupled to a substrate, and a flexural plate wave device. The flexural plate wave device is configured to generate a stream of air to flow across the electrical device to cool the IC die during operation of the IC die.
Abstract:
A method of processing a semiconductor wafer using a double side grinder of the type that holds the wafer in a plane with a pair of grinding wheels and a pair of hydrostatic pads. The method includes measuring a distance between the wafer and at least one sensor and determining wafer nanotopology using the measured distance. The determining includes using a processor to perform a finite element structural analysis of the wafer based on the measured distance.
Abstract:
A double side grinder comprises a pair of grinding wheels and a pair of hydrostatic pads operable to hold a flat workpiece (e.g., semiconductor wafer) so that part of the workpiece is positioned between the grinding wheels and part of the workpiece is positioned between the hydrostatic pads. At least one sensor measures a distance between the workpiece and the respective sensor for assessing nanotopology of the workpiece. In a method of the invention, a distance to the workpiece is measured during grinding and used to assess nanotopology of the workpiece. For instance, a finite element structural analysis of the workpiece can be performed using sensor data to derive at least one boundary condition. The nanotopology assessment can begin before the workpiece is removed from the grinder, providing rapid nanotopology feedback. A spatial filter can be used to predict the likely nanotopology of the workpiece after further processing.