摘要:
Various arrangements of multi-RDL structure devices are disclosed. In one aspect, an apparatus is provided that includes a first redistribution layer structure and a second redistribution layer structure mounted on the first redistribution layer structure. A first semiconductor chip is mounted on the second redistribution layer structure and electrically connected to both the second redistribution layer structure and the first redistribution layer structure.
摘要:
Various multi-die arrangements and methods of manufacturing the same are disclosed. In one aspect, a method of manufacturing a semiconductor chip device is provided. A redistribution layer (RDL) structure is fabricated with a first side and second side opposite to the first side. An interconnect chip is mounted on the first side of the RDL structure. A first semiconductor chip and a second semiconductor chip are mounted on the second side of the RDL structure after mounting the interconnect chip. The RDL structure and the interconnect chip electrically connect the first semiconductor chip to the second semiconductor chip.
摘要:
Various semiconductor chip devices with stacked chips are disclosed. In one aspect, a semiconductor chip device is provided. The semiconductor chip device includes a first semiconductor chip that has a floor plan with a high heat producing area and a low heat producing area. At least one second semiconductor chip is stacked on the low heat producing area. The semiconductor chip device also includes means for transferring heat from the high heat producing area.
摘要:
A double side grinder comprises a pair of grinding wheels and a pair of hydrostatic pads operable to hold a flat workpiece (e.g., semiconductor wafer) so that part of the workpiece is positioned between the grinding wheels and part of the workpiece is positioned between the hydrostatic pads. At least one sensor measures a distance between the workpiece and the respective sensor for assessing nanotopology of the workpiece. In a method of the invention, a distance to the workpiece is measured during grinding and used to assess nanotopology of the workpiece. For instance, a finite element structural analysis of the workpiece can be performed using sensor data to derive at least one boundary condition. The nanotopology assessment can begin before the workpiece is removed from the grinder, providing rapid nanotopology feedback. A spatial filter can be used to predict the likely nanotopology of the workpiece after further processing.
摘要:
Various die stacks and methods of creating the same are disclosed. In one aspect, a method of manufacturing is provided that includes mounting a first semiconductor die on a second semiconductor die of a first semiconductor wafer. The second semiconductor die is singulated from the first semiconductor wafer to yield a first die stack. The second semiconductor die of the first die stack is mounted on a third semiconductor die of a second semiconductor wafer. The third semiconductor die is singulated from the second semiconductor wafer to yield a second die stack. The second die stack is mounted on a fourth semiconductor die of a third semiconductor wafer.
摘要:
Various fan-out devices are disclosed. In one aspect, a semiconductor chip device is provided that includes a redistribution layer (RDL) structure. The RDL structure includes plural metallization layers and plural polymer layers. One of the polymer layers is positioned over one of the metallization layers. The one of the metallization layers has conductor traces. The one of the polymer layers has an upper surface that is substantially planar at least where the conductor traces are positioned. A semiconductor chip is positioned on and electrically connected to the RDL structure. A molding layer is positioned on the RDL structure and at least partially encases the semiconductor chip.
摘要:
An apparatus for cooling a semiconductor element is provided. The apparatus can include an electron emitter configured to emit electrons such that at least some of the emitted electrons become attached to air particulates and an air accelerator configured to generate an electric field that accelerates the air particulates toward the air accelerator to create an air flow over at least a portion of the semiconductor element. The air flow carries heat away from the at least a portion of the semiconductor element.
摘要:
Methods for holding a workpiece with a hydrostatic pad are disclosed herein. The pad includes hydrostatic pockets formed in a face of the body directly opposed to the wafer. The pockets are adapted for receiving fluid through the body and into the pockets to provide a barrier between the body face and the workpiece while still applying pressure to hold the workpiece during grinding. The hydrostatic pads allow the wafer to rotate relative to the pads about their common axis. The pockets are oriented to reduce hydrostatic bending moments that are produced in the wafer when the grinding wheels shift or tilt relative to the hydrostatic pads, helping prevent nanotopology degradation of surfaces of the wafer commonly caused by shift and tilt of the grinding wheels.
摘要:
Various semiconductor chip devices and methods of making the same are disclosed. In one aspect, an apparatus is provided that includes a first redistribution layer (RDL) structure having a first plurality of conductor traces, a first molding layer on the first RDL structure, plural conductive pillars in the first molding layer, each of the conductive pillars including a first end and a second end, a second RDL structure on the first molding layer, the second RDL structure having a second plurality of conductor traces, and wherein some of the conductive pillars are electrically connected between some of the first plurality of conductor traces and some of the second plurality of conductor traces to provide a first inductor coil.
摘要:
Various molded fan-out semiconductor chip devices are disclosed. In one aspect, a semiconductor chip device is provided that includes a first molding layer that has internal conductor structures, a redistribution layer (RDL) structure positioned on the first molding layer and electrically connected to the internal conductor structures, a semiconductor chip positioned on and electrically connected to the RDL structure, and a second molding layer positioned on the RDL structure and at least partially encapsulating the semiconductor chip.