Abstract:
The present invention addresses the problem that, when an optical amplification device having a plurality of optical transmission paths, such as multi-core optical fibers, is used for bidirectional communication, it is difficult to construct an optical transmission system optimized for all of signal lights having different transmission directions. The optical amplification device of the present invention comprises: an optical guide means having a plurality of optical transmission paths including an optical amplification medium having a gain in the wavelength band of a signal light; an excitation light introducing means for introducing excitation light for exciting the optical amplification medium into the optical guide means from both ends of the optical guide means; and a residual excitation light introducing means for introducing residual excitation light output from both ends of the optical guide means and having a wavelength component of the excitation light into the optical guide means.
Abstract:
To suppress the deterioration of the characteristics of a MIMO equalizer as well as minimizing an increase in circuit size in spite of the occurrence of signal spectrum narrowing and asymmetric spectrum degradation, a wavelength-division multiplexing optical transmission system (10) according to an embodiment includes a transmitter (1) that generates one channel signal by wavelength-division multiplexing a plurality of subcarrier signals so as to overlap each other and transmits the channel signal, and a receiver (2) that separates a received channel signal into subcarrier signals, and performs equalization using an MIMO equalizer (3) including a FDE-MIMO equalizer (4) and a TDE-MIMO equalizer (5) on each of the separated subcarrier signals.
Abstract:
A distance measurement device (2000) generates transmission light by modulating an optical carrier wave. The distance measurement device (2000) transmits the generated transmission light, and receives reflected light acquired by the transmission light being reflected by a measured object (10). The distance measurement device (2000) generates a first beat signal by causing the transmission light to interfere with reference light. The distance measurement device (2000) generates a second beat signal by causing the reflected light to interfere with the reference light. The distance measurement device (2000) calculates a distance to the measured object (10), based on a difference between the first beat signal and the second beat signal.
Abstract:
The receiving-side system (10) includes a smaller number of optical reception front ends (12) than the number of a plurality of wavelength-multiplexed subcarrier signals. Each of the optical reception front ends (12) is configured to receive two or a plurality subcarrier signals of the plurality of subcarrier signals. A frequency offset monitoring unit (22) monitors frequency offsets of the respective subcarrier signals received by the optical reception front end (12). A light source frequency control unit (24) controls at least one of a light source frequency of the transmitting-side system (2) and a light source frequency of the receiving-side system (10) based on a result of the monitoring performed by the frequency offset monitoring unit (22).
Abstract:
It is difficult to obtain a demodulated signal with high signal quality in a digital optical receiver because it is difficult to compensate for each of different types of waveform distortion by a high-performance equalization process; therefore, a digital signal processor according to an exemplary aspect of the present invention includes a fixed equalization means for performing a distortion compensation process based on a fixed equalization coefficient on an input digital signal; an adaptive equalization means for performing an adaptive distortion compensation process based on an adaptive equalization coefficient on an equalized digital signal output by the fixed equalization means; a low-speed signal generation means for generating a low-speed digital signal by intermittently extracting one of the input digital signal and the equalized digital signal; a low-speed equalization coefficient calculation means for calculating a low-speed equalization coefficient to be used for a distortion compensation process of the low-speed digital signal; and a fixed equalization coefficient calculation means for calculating the fixed equalization coefficient by using at least a predetermined coefficient out of the low-speed equalization coefficient and the predetermined coefficient.
Abstract:
The optical transmission system incudes signal output means (11S) for outputting a drive signal according to an input signal to the first optical modulator (11a), first waveform shaping signal output means (12S) for outputting a first waveform shaping signal to the second optical modulator (10A), and second waveform shaping signal output means (13S) for outputting a second waveform shaping signal to the third optical modulator (13a). The first waveform shaping signal is output to the second optical modulator (10A) at a timing relatively later than a timing of an output of a signal by the first optical modulator (11a). The second waveform shaping signal is output to the third optical modulator (13a) at a timing relatively earlier than the timing of the output of the signal by the first optical modulator (11a).