Abstract:
It is difficult to construct an optical fiber transmission system enabling relay optical amplification using a coupled multi-core optical fiber as an optical transmission path; therefore, an optical amplification device includes first optical spatial layout converting means for converting a spatial layout of a plurality of optical signal beams propagating through each of a plurality of cores, from a coupled state in which optical signal beams interfere between a plurality of cores to a non-coupled state in which optical signal beam interference is reduced between a plurality of cores; optical amplifying means for amplifying, in the non-coupled state, the plurality of optical signal beams with the non-coupled state and generating a plurality of amplified optical signal beams; and second optical spatial layout converting means for converting a spatial layout of the plurality of amplified optical signal beams from the non-coupled state to the coupled state.
Abstract:
In the elastic optical network, there has been the problem that processing steps increase that are required to re-optimize client signals to be concentrated; therefore, an optical network controller according to an exemplary aspect of the present invention includes reallocation detection means for monitoring an operation status of at least one of an optical communication channel and an optical node device that constitute an optical network, and determining, based on the operation status, whether or not to reallocate a client signal accommodated in an optical path set in the optical network; design-candidate exclusion means for designating, as a design exclusion object, at least one of the optical communication channel and the optical node device that are associated with an optical path targeted for reallocation that accommodates the client signal that the reallocation detection means has determined to reallocate; optical path design means for determining an alternative route for the optical path targeted for reallocation from among routes with the exception of the design exclusion object; traffic reference means for determining the client signal to be reaccommodated in an optical path on the alternative route, referring to demand traffic accommodated in the optical path targeted for reallocation; and line concentration design means for constituting line-concentration traffic in which traffic having been allocated to the alternative route and the demand traffic are concentrated, wherein the traffic reference means determines a reallocation optical path in which an optical path candidate with number of occupied wavelength slots increasing is excluded from optical path candidates on the alternative route, and the optical path design means determines wavelength allocation of the reallocation optical path so as to accommodate the line-concentration traffic.
Abstract:
Because a light amplification device using a multicore optical fiber provides low utilization efficiency of excitation light according to a cladding excitation system, the present disclosure provides a light amplification device including: a first optical waveguide including a first light amplification medium; a second optical waveguide including a second light amplification medium; a first excitation light introducing circuit for introducing first excitation light for exciting the first light amplification medium into the first optical waveguide; and a first residual excitation light introducing circuit for introducing first residual excitation light which is output from the first optical waveguide and has a wavelength component of the first excitation light, into the second optical waveguide.
Abstract:
Light amplification devices using coupled multi-core optical fibers have a figure of merit that temporally varies, which makes it difficult to perform performance evaluation and to build a light transmission system using the same. Accordingly, a light amplification device of the present invention comprises: a band control means that controls the wavelength band of a light carrier to generate a band control light; and a band control light amplification means that has a plurality of light amplification media through which the band control light propagates, wherein the band control light amplification means amplifies the band control light in a coupled state in which the light propagating through the plurality of light amplification media induces a crosstalk and wherein the band control means controls the wavelength band such that the band control light having propagated through the plurality of light amplification media has a reduced coherence.
Abstract:
In optical amplifiers that use a multicore optical fiber, the absorption efficiency of excitation light in an optical amplification medium is low and the amplification efficiency of light intensity becomes lower in the cladding excitation method; therefore, an optical amplification apparatus according to the present invention includes an optical amplification medium, having a gain in a wavelength band of signal light, configured to receive the signal light; excitation light introduction means for introducing, into the optical amplification medium, excitation light to excite the optical amplification medium; and residual excitation light introduction means for introducing, into the optical amplification medium, residual excitation light output from the optical amplification medium, the residual excitation light having a wavelength component of the excitation light.
Abstract:
An optical network control device includes: a path setting unit that sets, based on topology information including a connection relationship among a plurality of nodes and a first route selection index value of routes each connecting the plurality of nodes, a first path for a route having the first route selection index value being minimum from among route candidates linking a start point node and an end point node of a requested traffic; a topology information modification unit that calculates a second route selection index value acquired by increasing the first route selection index value of the route that accommodates the first path; and a path selection unit that selects a second path for a route having the second route selection index value being minimum from among the route candidates.
Abstract:
It is difficult to improve the usage efficiency of an optical communication network due to the passband narrowing effect in a wavelength selection process in an optical communication network using a wavelength division multiplexing system; therefore, an optical network management apparatus according to an exemplary aspect of the present invention includes wavelength selection information generating means for generating wavelength selection information on a wavelength selection process through which an optical path accommodating an information signal goes, with respect to each optical path; and wavelength selection information notifying means for notifying an optical node device through which the optical path goes of the wavelength selection information.
Abstract:
In an optical network by a highly dense wavelength division multiplexing system using a flexible frequency grid, it is difficult to improve the optical bandwidth utilization efficiency in the optical network as a whole with improving the fault tolerance, therefore, an optical network controller according to an exemplary aspect of the present invention includes an optical path setting means for selecting a plurality of optical node pairs composed of two optical nodes from among a plurality of optical nodes composing the optical network by a highly dense wavelength division multiplexing system using a flexible frequency grid, and setting, between each of the plurality of optical node pairs, a plurality of optical paths including a first optical path and a second optical path each of which links the optical node pair through various routes; and an optical band setting means for setting respective optical bands based on optical path length and transmission capacity so that an amount of optical bandwidths of the first optical path may become larger than or equal to an amount of optical bandwidths of the second optical path.
Abstract:
If wavelength defragmentation is performed during the operation of an optical network, an instantaneous interruption of a network arises; consequently, data are lost; therefore, an optical network control method according to an exemplary aspect of the present invention includes monitoring a data volume of a client signal to be transmitted using a plurality of optical subcarriers; and performing synchronously, depending on a variation in the data volume, an optical subcarrier changing process of changing an active optical subcarrier, of the plurality of optical subcarriers, to be used for transmitting the client signal, and a remapping process of remapping the client signal onto an active optical subcarrier after having been changed.
Abstract:
An optical amplification apparatus includes an optical amplification medium, having a gain in a wavelength band of signal light, configured to receive the signal light; excitation light introduction means for introducing, into the optical amplification medium, excitation light to excite the optical amplification medium; and residual excitation light introduction means for introducing, into the optical amplification medium, residual excitation light output from the optical amplification medium, the residual excitation light having a wavelength component of the excitation light, wherein the residual excitation light introduction means includes, on a side of one end of the optical amplification medium, residual excitation light multiplexing means for multiplexing the signal light and the residual excitation light, and on a side of another end of the optical amplification medium, space propagation type wavelength demultiplexing means for wavelength-demultiplexing the signal light and the residual excitation light by means of a spatial optical system.