Abstract:
A technique includes obtaining different sets of data, which are provided by seismic sensors that share a tow line in common. Each data set is associated with a different spatial sampling interval. The technique includes processing the different sets of data to generate a signal that is indicative of a seismic event that is detected by the set of towed seismic sensors. The processing includes using the different spatial sampling intervals to at least partially eliminate noise from the signal.
Abstract:
Apparatus and methods for acquiring seismic data using a seabed seismic data cable positioned on a seabed are described, including correcting for the effect of one or more sensor non-linear motions, which improves accuracy of seismic data. One or multiple non-linear movements of the sensor may be corrected for. It is emphasized that this abstract is provided to comply with the rules requiring an abstract, which will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. 37 CFR 1.72(b).
Abstract:
An electromagnetic source for electromagnetic survey of a subsea formation includes a towfish configured to be towed by a surface vessel; a plurality of electrodes attached to the towfish; and an acoustic ranging system having acoustic components individually attached to each of the towfish and the plurality of electrodes, wherein the acoustic ranging system is configured to determine a geometry of the plurality of electrodes.
Abstract:
Seabed sensor units, systems including same, and methods for acquiring seabed data are described, one seabed sensor unit comprising a base, the base containing at least one sensor able to detect a seismic signal, electronics comprising a clock and one or more electronic components enabling the sensor to communicate seismic data to one or more memory modules, and a local autonomous power source. This abstract is provided to comply with the rules requiring an abstract, which will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. 37 CFR 1.72(b).
Abstract:
The present invention provides a coupling device (300). The coupling device includes a collar (315, 405) defining an opening therethrough to receive a seismic sensor (305) such that the collar (315, 405) permits rotation about the seismic sensor (305) and at least three extensions (320, 410) from the collar, the extensions (320, 410) being capable of rotating with the collar (315, 405) such that any two of them may couple to the ground.
Abstract:
The present invention provides a coupling device (300). The coupling device includes a collar (315, 405) defining an opening tberethrough to receive a seismic sensor (305) such that the collar (315, 405) permits rotation about the seismic sensor (305) and at least three extensions (320, 410) from the collar, the extensions (320, 410) being capable of rotating with the collar (315, 405) such that any two of them may couple to the ground.
Abstract:
A method of performing a seismic survey of a hydrocarbon reservoir in the earth formations beneath a body of water includes deploying a seismic cable from a drum carried by a remotely operated vehicle on the seabed. The cable is deployed into a lined trench, which is formed either concurrently with cable deployment or during a previous survey, to ensure good repeatability of successive surveys of the reservoir, in order to enable changes in characteristics of the reservoir, eg due to depletion, to be monitored.
Abstract:
A method of performing a seismic survey of earth formations beneath a body of water is disclosed. The method includes: (a) deploying a seismic cable having a plurality of seismic sensors distributed therealong in close proxmity to elongate locating means provided at the bottom of the body of water; (b) operating an acoustic source in the body of water to produce seismic signals which enter the formations; (c) detecting seismic signals which return from the formations with said sensors; and (d) removing the seismic cable from the bottom of the body of water.
Abstract:
A technique includes receiving data indicative of a first measurement acquired by a rotation sensor on a seismic streamer and based on the first measurement, estimating a torque noise present in a measurement acquired by a second sensor on the streamer. The technique includes attenuating the torque noise based on the estimate.
Abstract:
A computer-implemented method includes accessing a set of multicomponent marine noise data exhibiting a plurality of polarization vectors at each of a plurality of co-located pressure and particle motion data points on a marine seismic survey apparatus; and determining a set of perturbation noise data for the marine seismic survey apparatus from the polarization vectors. Computer readable program storage media are encoded with instructions that, when executed by a processor, perform the computer-implemented method. A computing apparatus is programmed to perform the computer-implemented method.