Abstract:
There is provided an apparatus comprising means for: receiving, from a requesting service and/or from a network function, an indication of security credentials for a selected service agent; and transmitting the security credentials to the selected service
Abstract:
Various communication systems may benefit from being able to communicate without requiring certain identifiers to be assigned. For example, certain wireless communication systems may benefit from machine type communication using mobile originated short messaging service without a mobile station international subscriber directory number. A method can include preparing, at a user equipment, a mobile originated short message service message. The method can also include identifying, in the message, a particular external identifier from a set of external identifiers assigned to an application.
Abstract:
Systems, methods, apparatuses, and computer program products for interworking between bearer-less networks and bearer based networks are provided. One method includes receiving, by a network entity in a bearer-less network, a context request to obtain user equipment context information for a user equipment moving from the bearer-less network to a bearer-based network. The method may further include providing a context response comprising the context information to a network entity in the bearer-based network, the context information used to establish bearers for the user equipment to obtain internet protocol (IP) based services.
Abstract:
Various communication systems can benefit from signaling optimization. For example, communication systems including fourth generation (4G) and fifth generation (5G) networks may benefit from network signaling optimization for light connected mode. A method can include identifying, by a device, that a user equipment has left an area. The method can also include starting, by the device, a suspend procedure for the user equipment based on identifying that the user equipment has left the area.
Abstract:
Various communication systems may benefit from improved handover procedures. For example, certain handover procedures involving edge clouds in a 5G or LTE network may benefit from a more seamless handover during communication. A method may include receiving at a first application server located in a first cloud a handover notification that a user equipment is moving to a radio network being served by a second application server located in a second cloud, where the application server is running an application session for the user equipment. The method may also include transferring the application session to the second application server.
Abstract:
Various communication systems may benefit from appropriate restriction on use. For example, certain wireless communication systems may benefit from radio-access-technology-specific access restrictions. A method can include registering a user equipment with a network element. The registering can include identifying user equipment capabilities. The method can also include receiving a response from the network element indicating restriction on use of at least one radio access technology.
Abstract:
Improving user experience during handover. Transmitting by a source base station to a target base station a handover request message including a range of QoS profiles, receiving by the source bases station from the target base station a handover request acknowledge message indicating the radio resources or QoS profile selected from the range of QoS profiles, transmitting by the source base station station an identified resource gap between the selected QoS profile of the target base station and the currently used QoS profile in the source base station to an experience management entity.
Abstract:
Methods and devices for improvements in handover between different access networks which enable seamless services to be experienced by a terminal. An aspect encompasses a device, comprising a processor configured to provide control in a control plane for a terminal for access to a first access network and to a second access network, wherein a coverage of the second access network at least partly overlaps the coverage of the first access network, the terminal is capable of having access to the first access network with a first service and to the second access network with a second service in parallel, and access for the terminal to a respective access network is routed in a user plane via a respective distinct access network entity.
Abstract:
A system, a method, an apparatus, and a computer program product for general packet radio service (GPRS) tunneling protocol control plane (GTP-C) overload control is provided. One method includes sending a message indicating overload to a network entity. The message may comprise a back-off time value to indicate the overload. The method may further include selectively reducing signaling based on the message.
Abstract:
Methods and apparatus, including computer program products, are provided for a 3GPP bridge for time sensitive networks. In some example embodiment, there may be provided an apparatus causes to at least: receive at least one management object, the at least one management object comprising routing information between an ingress port at a 3GPP bridge and an egress port at the 3 GPP bridge; determine, for the ingress port and the egress port combination, at least one quality of service constraint to provide a delay guarantee towards a destination media access control address, the determination based on the received at least one management object and one or more bridge delays indicating a delay between the ingress port and the egress port; and cause a change, based on the determined at least one quality of service constraint, to a protocol data unit session carrying a time sensitive network flow.