Abstract:
Embodiments are directed to calculating a current associated with a motor of an elevator based on an output of a speed regulator, and controlling the elevator based on the current. Embodiments are directed to examining a feeder current obtained via a converter current sensor of a regenerative drive during a peak power condition, and regulating a speed of an elevator based on the feeder current.
Abstract:
A braking system for an elevator includes an electromagnetic brake operably connected to an elevator car. A control circuit is operably connected to the electromagnetic brake and includes a switching mechanism to selectively modify a rate of engagement of the electromagnetic brake to selectively modify deceleration of the elevator car. A method of engaging an electromagnetic brake for an elevator system includes detecting one or more operational characteristics of the elevator system and selecting a first position or a second position of a switching mechanism disposed at a brake control circuit depending on the sensed operational characteristics. Electrical current is directed through one or more components of the brake control circuit, depending on the position of the switching mechanism, to determine a rate of engagement of the electromagnetic brake. A flow of electrical current through the brake control circuit is stopped, thereby causing engagement of the electromagnetic brake.
Abstract:
A method (70) for controlling a multilevel regenerative drive (30) having a converter (32) and an inverter (34) is disclosed. The method (70) may include applying at least one of unipolar modulation and bipolar modulation to the converter (32), and applying at least one of unipolar modulation and bipolar modulation to the inverter (34). A control system (52) for a mechanical system (20) having a motor (28) is also disclosed. The control system (52) may comprise a converter (32) operatively connected to a power source (29), and an inverter (34) operatively connected to the motor (28) of the mechanical system (20). At least one controller may be in communication with the converter (32) and inverter (34), and may be configured to apply at least one of unipolar modulation and bipolar modulation to each of the converter (32) and the inverter (34).
Abstract:
An elevator system includes a battery; a machine having a motor to impart motion to an elevator car; an inverter having a plurality of switches to convert DC power from the battery to AC power for the machine in a motoring mode; a speed sensor coupled to the machine, the speed sensor to generate a speed signal indicative of machine speed; and a controller to apply braking signals to a group of the switches in a braking mode, the braking signals having a duty cycle in response to the speed signal.
Abstract:
An elevator system includes a battery; a machine having a motor for imparting motion to an elevator car; an inverter for converting DC power from the battery to AC power for the machine in motoring mode and converting AC power from the machine to DC power for the battery in regenerative mode; and a controller to control the inverter, the controller implementing at least one of: detecting an overload at the battery in motoring mode and reducing car speed in response to the overload; detecting an overcharge at the battery in regenerative mode and reducing car speed in response to the overcharge; detecting motor direct current in a motor field weakening mode and reducing car speed in response to the motor direct current; and detecting car load and adjusting car speed in response to car load.
Abstract:
A method and system for providing power to an elevator hoist motor is disclosed. An isolated bi-directional dc/dc converter is coupled between a power converter and a power inverter. A battery is coupled to the isolated bi-directional dc/dc converter. A processor is configured to sense power levels and couple the battery to an elevator hoist motor via the isolated bi-directional dc/dc converter depending on the voltage of the main power supply. The isolated bi-directional dc/dc converter is also configured to provide power to charge the battery.
Abstract:
A three-phase regenerative drive employing multiple converter pulse width modulation (PWM) strategies. The drive includes a three-phase converter having inputs for connection to a three-phase AC source, the three-phase converter having three phase legs, a DC bus operably connected to the three-phase converter wherein the three phase converter is configured to direct current from the three-phase AC source to the DC bus, and a three-phase inverter operably connected to the DC bus and a motor, the three phase inverter configured to draw current from the DC bus and provide three phase command signals to the motor. The three-phase converter employs a first PWM strategy to supply current to the DC bus, and the converter employs a second PWM strategy to supply current to the DC bus if a total current in the three phase legs exceeds a selected threshold.
Abstract:
A method and system for providing power to an elevator hoist motor is disclosed. An isolated bi-directional dc/dc converter is coupled between a power converter and a power inverter. A battery is coupled to the isolated bi-directional dc/dc converter. A processor is configured to sense power levels and couple the battery to an elevator hoist motor via the isolated bi-directional dc/dc converter depending on the voltage of the main power supply. The isolated bi-directional dc/dc converter is also configured to provide power to charge the battery.
Abstract:
A system includes a converter operatively connected to an alternating current (AC) power source and a direct current (DC) bus, an inverter operatively connected to a motor and the DC bus, and a hybrid DC link system operatively connected between a high side and a low side of the DC bus. The converter includes a first plurality of switching devices in selective communication with each phase of the AC power source and the DC bus. The inverter includes a second plurality of switching devices in selective communication with each phase of the motor and the DC bus. The hybrid DC link system includes a ripple current control branch in parallel with an energy buffering branch.
Abstract:
A power system including a first drive including a first drive output, a second drive including a second drive output, wherein the first drive output is larger than the first drive output, at least one inductor operably coupled to the first drive and the second drive, and a load operably coupled to the system output.