Abstract:
A gateway for X2 interface communication is disclosed, comprising: an X2 internal interface for communicating with, and coupled to, a first and a second radio access network (RAN); an X2 language processing module for receiving messages from the first RAN according to a first X2 protocol and mapping the received messages to a second X2 protocol for transmission to the second RAN; and an X2 external interface for communicating with, and coupled to, a gateway in a wireless telecommunications core network. The gateway may further comprise a database for storing a plurality of rules for performing mapping at the X2 language processing module, and a state machine for maintaining state of one of the first RAN or the second RAN, and an interpreter for executing executable code received as part of the received messages and altering the state machine based on the executed executable code, and a regular expression pattern matcher for identifying patterns in the received messages that are present in the first X2 protocol but not present in the second X2 protocol.
Abstract:
Systems and methods are disclosed for adjusting transmit power in a wireless network. In one embodiment, a method is disclosed that includes identifying a selected base station with a first coverage area for adjustment of transmit power; identifying a plurality of neighboring base stations with coverage areas nearby the first coverage area; retrieving a plurality of signal strength measurements from a plurality of mobile devices within the coverage areas of the plurality of neighboring base stations; determining, based on the plurality of measurements, an effect on the plurality of mobile devices within the coverage areas of the plurality of neighboring base stations; and sending an instruction for adjustment of transmit power to the selected base station.
Abstract:
Systems and methods for an in-vehicle base station are described. In one embodiment, a mobile base station is disclosed comprising a first access radio for providing an access network inside and outside a vehicle; a second backhaul radio for providing a backhaul connection to a macro cell; and a global positioning system (GPS) module for determining a location of the mobile base station, and for transmitting the location of the mobile base station to a core network, wherein a transmit power of the first access radio is configured to increase or decrease based on a speed of the vehicle.
Abstract:
Systems and methods are disclosed for adjusting transmit power in a wireless network. In one embodiment, a method is disclosed that includes identifying a selected base station with a first coverage area for adjustment of transmit power; identifying a plurality of neighboring base stations with coverage areas nearby the first coverage area; retrieving a plurality of signal strength measurements from a plurality of mobile devices within the coverage areas of the plurality of neighboring base stations; determining, based on the plurality of measurements, an effect on the plurality of mobile devices within the coverage areas of the plurality of neighboring base stations; and sending an instruction for adjustment of transmit power to the selected base station.
Abstract:
Systems and methods are presented for using a mobile multi-radio access technology (multi-RAT) device for locating an individual, for example, in a search-and-rescue application. The multi-RAT device may permit the individual's cell phone to attach to the mobile multi-RAT device, and then may use a directional antenna to locate the individual. Various embodiments of such a device are described.
Abstract:
This invention discloses a heterogeneous mesh network comprised of multiple radio access technology nodes, wherein nodes can function dynamically, switching roles between client and server. Moreover, these nodes can operate in a heterogeneous fashion with respect to one another. In an alternate embodiment, the invention describes a mesh network comprised of nodes operating over TV white-space. This invention additionally discloses self-organizing network embodiments and embodiments that include novel methods of monitoring operational parameters within a mesh network, adjusting those operational parameters, and creating and implementing routing tables.
Abstract:
We disclose systems and methods of dynamically virtualizing a wireless communication network. The communication network is comprised of heterogeneous multi-RAT mesh nodes coupled to a computing cloud component. The computing cloud component virtualizes the true extent of the resources it manages and presents an interface to the core network that appears to be a single base station.
Abstract:
Methods and computer software are disclosed for providing decomposition and distribution of network functions. In one example embodiment a method includes decomposing a node in a network into a decomposed node including a plurality of virtual machines or containers; and moving the decomposed node to any location across the network.
Abstract:
Systems, methods and computer software are disclosed for providing a Diameter multifold message. In one embodiment a method is disclosed, comprising: providing a multifold-command Attribute Value Pair (AVP), the multifold-command AVP including an AVP code, a set of VMP flags, an AVP length and a vendor ID; including the AVP in a Capabilities Exchange Request (CER) command for a Diameter stack supporting multiplexing of commands in one message; and using the AVP to combine messages from multiple applications running on a single Diameter node and multiple commands from a single application.
Abstract:
A method for scheduling resources in a network where the scheduling activity is split across two nodes in the network is disclosed, comprising: receiving, from a local scheduler in a first radio access network, access network information at a global scheduler; accessing information regarding a second radio access network allocating, at the global scheduler, resources for secondary allocation by the local scheduler; applying a hash function to map the allocated resources for secondary allocation to a set of hash values; and sending, from the global scheduler, the set of hash values to the local scheduler.