Abstract:
A lubrication system for an aircraft engine includes an engine lubricant tank including at least a supply port hydraulically connectable to the aircraft engine, a lubricant makeup port, and an overfill port, an auxiliary lubricant tank, a lubricant makeup conduit hydraulically connecting the auxiliary lubricant tank to the lubricant makeup port. The lubricant makeup conduit includes a pump operable to move lubricant from the auxiliary lubricant tank to the lubricant makeup port, and an overfill conduit hydraulically connecting the overfill port to the auxiliary lubricant tank. A method of operating a lubrication system of an aircraft engine of an aircraft is also disclosed.
Abstract:
A turbofan engine comprising an outer bypass duct, an annular bypass flow path between the outer bypass duct and a core engine, an engine component forming an airflow obstruction adjacent the outer bypass duct, an air cooler having a tube, the tube having at least a sinuous portion extending in the annular bypass flow path, the sinuous portion extending along the outer bypass duct, downstream of the airflow obstruction, the sinuous portion configured for exchanging heat between a fluid circulating in the tube and air circulating in the bypass flow path during operation of the turbofan engine.
Abstract:
The pump can have a pump body, a main cavity having an inlet and an outlet, a rotor rotatably mounted in the main cavity and configured to pump fluid from the inlet to the outlet as it rotates, a separator cavity disposed adjacent the main cavity and configured to sustain a vortex, a fluid passage fluidly connecting the main cavity to the separator cavity, the fluid passage preserving momentum of fluid from the main cavity to the separator cavity to contribute to the vortex.
Abstract:
A cooling system for a gas turbine engine comprising a closed circuit containing a change-phase fluid, the closed circuit having at least one cooling exchanger configured to be exposed to a flow of cooling air for the change-phase fluid to release heat to the cooling air. A plurality of heat exchangers in are heat exchange relation with the change-phase fluid in the closed circuit, the plurality including at least a first heat exchanger configured to receive a first coolant from a first engine system for the change-phase fluid to absorb heat from the first coolant, and a second heat exchanger configured to receive a second coolant from a second engine system for the change-phase fluid to absorb heat from the second coolant. The system is configured so that the fluid at least partially vaporizes when absorbing heat from at least one of the first coolant and the second coolant and at least partially condenses when releasing heat to the cooling air. A method for cooling engine systems of a gas turbine engine is also provided.
Abstract:
A gas turbine engine includes a supply air conduit fluidly connected to an inlet of a combustion chamber to convey supply air to the combustion chamber, an exhaust conduit fluidly connected to an exit of the combustion chamber to convey exhaust gases away from the combustion chamber, and a recuperator defining a first flow path and a second flow path therethrough, the second flow path being in heat transfer communication with the first flow path, the first flow path defining part of the supply air conduit, the second flow path defining part of the exhaust conduit. Methods of operating the engine are also provided.
Abstract:
Multi-engine aircraft power plants and associated operating methods are disclosed. An exemplary multi-engine power plant comprises a first turboshaft engine and a second turboshaft engine configured to drive a common load such as a rotary wing of an aircraft; and a heat exchanger in thermal communication with an exhaust gas of the first turboshaft engine and in thermal communication with pre-combustion air of the second turboshaft engine. The heat exchanger is configured to permit heat transfer from the exhaust gas of the first turboshaft engine to the pre-combustion air of the second turboshaft engine.
Abstract:
The gas turbine engine can have a rotor rotatably mounted to an engine casing, the rotor having compressor blades, and an alternator, the alternator having an armature with a winding forming part of the rotor and a magnetic field generator forming part of the engine casing, with an air gap between the magnetic field generator and the armature, the winding being electrically connected to a resistor embedded in at least one of the compressor blades.
Abstract:
A method for providing an anti-icing airflow, including extracting a compressed airflow from a core flow path of an engine, heating the compressed airflow, mixing the heated compressed airflow with air extracted from a bypass flow path to create the anti-icing airflow having a higher temperature and pressure than that of the air extracted from the bypass flow path, and circulating the anti-icing airflow away from the bypass flow path. Also, an assembly located at least in part inside a turbofan engine and including a heat exchanger, a flow mixing device having a first inlet in the bypass flow path, a second inlet and an outlet, a first conduit providing fluid communication between the heat exchanger and a compressed air portion of the core flow path, a second conduit providing fluid communication between the heat exchanger and the second inlet, and a third conduit in fluid communication with the outlet.
Abstract:
An air-to-air cooler has a heat exchanger integrated to a housing. A first passage extends through the housing for directing a flow of cooling air through the heat exchanger. A second passage extends through the housing for directing a flow of hot air to be cooled through the heat exchanger. The first passage has a cooling air outlet tube disposed downstream of the heat exchanger. The cooling air outlet tube extends across the second passage between the heat exchanger and a hot air inlet of the second passage. The hot air inlet is disposed to cause incoming hot air to flow over the cooling air outlet tube upstream of the heat exchanger. An ejector drives the flow of cooling air through the first passage of the air-to-air cooler. A portion of the hot air flow may be used to drive the ejector.
Abstract:
A recuperator disposed in the exhaust duct of a gas turbine engine includes a plurality of recuperator plates arranged in a spaced-apart relationship to define therebetween a plurality of interstices and fluid channels, the plurality of interstices adapted to direct therethrough at least one first stream received at a leading plate edge of the recuperator plates and the plurality of fluid channels adapted to direct therethrough at least one second stream to effect heat exchange between the at least one first stream and the at least one second stream. Each recuperator plate includes, formed at the leading plate edge thereof, a first concavity extending along the leading edge in a direction substantially parallel to a longitudinal axis of the plate. The first concavity extends transversely to a direction of the at least one first stream flowing over each recuperator plate.