摘要:
Systems and methods for performing MCS adaptation are provided. In some cases, the network performs MCS adaptation based on received NACKs. In other cases, the mobile station determines an MCS based on channel quality measurements, and feeds back the MCS adaptation decision to the network. In either case, NACK-only feedback may be implemented to reduce interference.
摘要:
Apparatus, and an associated method, for providing transmit diversity to an open-loop MIMO communication scheme, such as a point to multipoint broadcast service in a cellular system. Multiple data streams of the broadcast data are broadcast by way of transmit diversity antennas of a sending station. The data symbols of the separate data streams are phase-shifted to be offset in phase from one another. The data streams, once the data symbols thereof are selectably phase-shifted by a phase shifter, are applied by an applier to sending nodes of the respective cells.
摘要:
A method is provided for communication in a wireless telecommunications system. The method comprises an access node performing a coordinated multi-point transmission with a relay node toward a user equipment, wherein the access node performs at least one master control function and does not perform at least one serving node function.
摘要:
A method for resource allocation. The method includes signaling a set of SRS subframes in which an SRS can be transmitted, wherein a UE not capable of aperiodic SRS transmission can be instructed to transmit periodic SRS in any of the SRS subframes. The method further includes signaling which of the SRS subframes are to be used for periodic SRS transmissions and which are to be used for aperiodic SRS transmissions, wherein a periodic SRS transmission is an SRS transmission that is transmitted by a UE in a first subframe, the first subframe being determined at least by the subframe in which the UE transmitted a previous SRS and an SRS periodicity, and wherein an aperiodic SRS transmission is an SRS transmission that is transmitted by a UE in a second subframe, the second subframe being determined at least by a transmission on a physical control channel to the UE.
摘要:
Methods of combining semi-persistent resource allocation and dynamic resource allocation are provided. Packets, such as VoIP packets, are transmitted on the uplink and downlink using respective semi-persistent resources. For each mobile device, awake periods and sleep periods are defined. The semi-persistent resources are aligned with the awake periods so that most of the time the mobile device can turn off its wireless access radio during the sleep periods. In addition, signalling to request, and to allocate, resources for additional packets are transmitted during the awake periods, and the resources allocated for the additional packets are within the awake windows.
摘要:
A method for processing a control channel at a user agent (UA) to identify at least one of an uplink and a downlink resource allocated by a resource grant within a multi-carrier communication system wherein resource grants are specified by control channel element (CCE) subset candidates wherein the carriers used for data transmission and reception are configured carriers, the method comprising the steps of receiving activation signals specifying active and deactivated carriers from among the configured carriers, for active carriers (i) identifying a number of CCE subset candidates to decode and (ii) decoding up to the identified number of CCE subset candidates in an attempt to identify the resource grant; and for deactivated carriers, ignoring CCE subset candidates associated with the deactivated carriers.
摘要:
A method, system and device are provided for avoiding in-device coexistence interference between different radio technologies by allocating random access channel preambles to include one or more dedicated access preambles to be sued for sending IDC interference indication messages over a random access channel (RACH) to a radio access network. In response, the radio network provides control parameters and/or instructions for avoiding interference in a random access response message corresponding to the IDC interference indication message using one or more fields in the MAC subheader and payload fields of a designated IDC MAC PDU message.
摘要翻译:提供了一种方法,系统和设备,用于通过分配随机接入信道前导码来包括一个或多个专用接入前导码,用于通过随机接入信道(RACH)发送IDC干扰指示消息来避免不同无线电技术之间的设备间共存干扰, 到无线电接入网络。 作为响应,无线电网络提供用于使用指定的IDC MAC PDU消息的MAC子头和有效载荷字段中的一个或多个字段来避免对与IDC干扰指示消息相对应的随机接入响应消息中的干扰的控制参数和/或指令。
摘要:
A method for activating a semi-persistent scheduled (SPS) resource using a user agent (UA) is presented. A downlink (DL) communication may be received by a UA using a physical downlink control channel (PDCCH). The DL communication may include a control message. When the control message is associated with an SPS Cell-Radio Network Terminal Identifier (C-RNTI) of the UA, the method may include retrieving a value of a New Data Indicator (NDI) field. When the value of the NDI field is equal to 0, the method may include inspecting the control message to determine whether the control message indicates an SPS activation. When the control message indicates an SPS activation, the method may include activating an SPS resource identified by the control message.
摘要:
Systems, apparatus and methods can be implemented for handling physical uplink shared channel (PUSCH) transmissions. A user equipment (UE) can decode, on a physical hybrid automatic repeat request (HARQ) indicator channel (PHICH), a negative acknowledgement (NACK) associated with an HARQ process. The UE can also receive, from a base station, an uplink grant without an associated transport block. The decoded NACK and the received uplink grant can trigger a respective transmission during a PUSCH transmission opportunity. The UE can then perform, during the PUSCH transmission opportunity, one of transmission of a PUSCH transmission associated with the HARQ process, transmission of control information based on the received uplink grant, or disregarding the decoded NACK and the received uplink grant.
摘要:
A method and user equipment in a network having a macro cell and at least one small cell, the method receiving, from a network element, a plurality of small cell measurement configurations and at least one condition for utilizing each of the plurality of small cell measurement configurations; determining whether a condition is satisfied for one of the plurality of small cell measurement configurations; and configuring small cell measurement on the user equipment based on the one of the plurality of small cell measurement configurations for which the condition is satisfied. Further, a method at the network element, the method sending, from the network element to at least one user equipment, a plurality of small cell measurement configurations and at least one condition for utilizing each of the plurality of small cell measurement configurations.