Abstract:
A thermoelectric generator unit according to this disclosure includes a plurality of tubular thermoelectric generators, each of which generates electromotive force based on a difference in temperature between the inner and outer peripheral surfaces. The unit further includes a plurality of electrically conductive members providing electrical connection for the generators and a container housing the generators inside. The container includes a shell surrounding the generators and a pair of plates, at least one of which has a plurality of openings and channels. Each channel houses an electrically conductive member. The generators are electrically connected together in series via the electrically conductive member. At least one of the channels has an interconnection which connects at least two of the openings together and a testing hole portion. The testing hole portion runs from the interconnection through an outer edge of the at least one plate.
Abstract:
A thermoelectric generation unit according to the present disclosure includes a plurality of thermoelectric generation tubes. Each thermoelectric generation tube generates an electromotive force in an axial direction based on a temperature difference between its inner peripheral surface and outer peripheral surface. The thermoelectric generation unit includes a container housing the plurality of thermoelectric generation tubes inside, a plurality of electrically conductive members providing electrical interconnection for the plurality of thermoelectric generation tubes, and a plurality of electrically conductive ring members each receiving an end of a thermoelectric generation tube so as to be in contact with the outer peripheral surface of the thermoelectric generation tube. Each electrically conductive ring member electrically connects the thermoelectric generation tube to a corresponding electrically conductive member.
Abstract:
A terahertz electromagnetic wave generator according to the present disclosure includes: a thermoelectric material layer; a metal layer which partially covers the surface of the thermoelectric material layer; and a light source system which is configured to irradiate both a surface region of the thermoelectric material layer that is not covered with the metal layer and an edge of the metal layer with pulsed light, thereby generating a terahertz wave from the thermoelectric material layer.
Abstract:
The solid electrolyte material of the present disclosure includes Li, M, O, X, and F. M is at least one element selected from the group consisting of Ta and Nb. X is at least one element selected from the group consisting of Cl, Br, and I.
Abstract:
A method for producing a halide includes heat-treating a mixed material in an inert gas atmosphere, the mixed material being a mixture of (NH4)aMX3+a and LiZ. The M includes at least one element selected from the group consisting of Y, a lanthanoid, and Sc. The X is at least one element selected from the group consisting of Cl, Br, I, and F. The Z is at least one element selected from the group consisting of Cl, Br, I, and F. Furthermore, 0
Abstract:
The battery includes a positive electrode, a first electrolyte layer, a second electrolyte layer, and a negative electrode arranged in this order. The first electrolyte layer contains a first solid electrolyte material and a second solid electrolyte material. In the first electrolyte layer, the mass ratio of the second solid electrolyte material to the first solid electrolyte material is greater than 0.05 and less than 1. The second electrolyte layer contains the second solid electrolyte material. The first solid electrolyte material is formed of Li, M, O, and X. In the first solid electrolyte material, M is at least one element selected from the group consisting of metal elements other than Li, and metalloids, and X is at least one element selected from the group consisting of Cl, Br, and I. The second solid electrolyte material has a composition different from that of the first solid electrolyte material.
Abstract:
An electrolyte material is represented by Li4-3a-cbAlaMbFxClyBr4-x-y, wherein M is at least one selected from the group consisting of Mg, Ca, and Zr; c represents a valence of M; and the following five inequalities are satisfied: 0
Abstract:
The production method of the present disclosure includes heat-treating a material mixture containing a compound containing Y, a compound containing Sm, NH4α, Liβ, and Caγ2 in an inert gas atmosphere. The compound containing Y is at least one selected from the group consisting of Y2O3 and Yδ3, and the compound containing Sm is at least one selected from the group consisting of Sm2O3 and Smε3. The material mixture contains at least one selected from the group consisting of Y2O3 and Sm2O3, and α, β, γ, δ, and ε are each independently at least one selected from the group consisting of F, Cl, Br, and I.
Abstract:
The present disclosure provides a solid electrolyte material having a high lithium ion conductivity. The solid electrolyte material according to the present disclosure consists essentially of Li, Zr, Y, M, and X. M is at least one element selected from the group consisting of Al, Ga, In, Sc, and Bi. X is at least one element selected from the group consisting of Cl and Br.
Abstract:
A halide solid electrolyte material according to the present disclosure is represented by the chemical formula Li6-4b+2ab(Zr1-aMa)bX6 (I), wherein M denotes at least one element selected from the group consisting of Mg, Ca, Sr, Ba, and Zn, X denotes at least one halogen element, and two mathematical formulae 0