摘要:
In one embodiment, a method for generating a radio-frequency coverage map. The method includes receiving coverage map data comprising a plurality of locations within a region, and an identification of a location in the plurality of locations corresponding to a radio transceiver, wherein the locations within the region are represented by at least corresponding x- and y-terms of a Cartesian coordinate system. The method further includes receiving calibration data comprising a plurality of observed signal strength values at corresponding ones of the plurality of locations, converting the x- and y-terms of the locations of the coverage map data to corresponding first and second warped coordinate terms of a warped coordinate system, and computing, using linear interpolation and the first and second warped coordinate terms, predicted received signal strength values at one or more locations in the coverage map based on the calibration data.
摘要:
In one embodiment, a method for generating a radio-frequency coverage map. The method includes receiving coverage map data comprising a plurality of locations within a region, and an identification of a location in the plurality of locations corresponding to a radio transceiver, wherein the locations within the region are represented by at least corresponding x- and y-terms of a Cartesian coordinate system. The method further includes receiving calibration data comprising a plurality of observed signal strength values at corresponding ones of the plurality of locations, converting the x- and y-terms of the locations of the coverage map data to corresponding first and second warped coordinate terms of a warped coordinate system, and computing, using linear interpolation and the first and second warped coordinate terms, predicted received signal strength values at one or more locations in the coverage map based on the calibration data.
摘要:
In an example embodiment, there is disclosed herein an apparatus comprising a wireless transceiver and packet processing logic coupled to the wireless transceiver. The packet processing logic is responsive to receiving a packet from a first node on a first path addressed to a node on a second path via the wireless transceiver to forward the packet on the second path towards the node on the second path via the wireless transceiver. The packet processing logic is further configured to send a reply to the packet to the first node on the first path via the wireless transceiver to a second node on the first path that is within range of the wireless receiver and on the second path to the first node on the first path responsive to determining the wireless transceiver cannot send a message directly the first upstream node.
摘要:
Methods, apparatuses and systems directed to routing configuration in a hierarchical wireless mesh network. In one implementation, the present invention uses neighbor messages to allow routing nodes to discover one another and configure a hierarchical routing configuration. In one implementation, the present invention provides a neighbor and adjacency protocol that provides for automatic mesh configuration and loop-free mesh topologies.
摘要:
In an example embodiment, there is disclosed herein an apparatus comprising a wireless transceiver and packet processing logic coupled to the wireless transceiver. The packet processing logic is responsive to receiving a packet from a first node on a first path addressed to a node on a second path via the wireless transceiver to forward the packet on the second path towards the node on the second path via the wireless transceiver. The packet processing logic is further configured to send a reply to the packet to the first node on the first path via the wireless transceiver to a second node on the first path that is within range of the wireless receiver and on the second path to the first node on the first path responsive to determining the wireless transceiver cannot send a message directly the first upstream node.
摘要:
Methods, apparatuses and systems directed to refreshing signal information in an infrastructure wireless node location mechanism. The wireless node location mechanism selectively terminates connections with wireless clients to refresh signal strength information used to compute an estimated location for the wireless clients. The wireless node location mechanism terminates the connection between a WLAN and a given wireless node, causing in typical WLAN protocol implementations, the mobile station to transmit frames or packets on all available operating channels in a given band. This allows access points and other WLAN elements, operating on different frequency channels, to detect frames transmitted by the mobile station and provide refreshed signal strength information to a wireless node location mechanism.
摘要:
Methods, apparatuses and systems directed to a wireless network interface supporting directional antenna diversity. Directional diversity, in one embodiment, makes use of antennas with higher gain and non-overlapping patterns to provide communication over a greater area and select the best antenna to receive signals transmitting wireless frames or packets. Certain embodiments optimize wireless network systems using Orthogonal Frequency Division Multiplexed (OFDM) signals where spatial diversity protection provided by spatially-separated, omni-directional antennas is not required. In other embodiments, use and selection of directional antennas allows for sectorization resulting in performance gains such as extended coverage areas, noise reduction, enhanced efficiency, and increased throughput.