Abstract:
An amplifier may include multiple stages, with the multiple stages arranged in a fan-out configuration. The fan-out configuration provides multiple amplified signals at multiple amplifier output nodes, which may be coupled to a shared set of downconverters. The shared downconverters may support processing of only a smaller bandwidth than the largest possible bandwidth of an input RF signal input to the amplifier. For example, the downconverters may support a bandwidth matching a smallest bandwidth of a supported RF signal. For example, when the amplifier is intended to support 5G mmWave RF signals and 5G sub-6 GHz RF signals, the downconverters may each individually support a bandwidth of carriers in the 5G sub-6 GHz RF signals but not individually support the entire bandwidth of a possible 5G mmWave RF signal.
Abstract:
Embodiments of this disclosure may include a receiver with a reconfigurable processing path for different signal conditions. Such a receiver may reconfigure between a mixer-first configuration and an amplifier-first configuration. In the mixer-first configuration, an RF input signal is not passed through an LNA for amplification before processing the RF input signal for downconversion to baseband and eventual extraction of the information in the signal. In the amplifier-first configuration, an RF input signal is passed through an LNA for amplification before processing the RF input signal for downconversion to baseband and eventual extraction of the information in the signal. Reconfiguring the receiver between mixer-first and amplifier-first configurations may be performed based on detection of jammer signals and/or measurement of signal-to-noise ratio (SNR).
Abstract:
A device includes a reconfigurable receiver front end having variable gain and variable bandwidth configured to tune to a plurality of communication channels in a communication band, the reconfigurable receiver front end responsive to a signal power level.
Abstract:
A multi-stage low-noise amplifier (LNA) device with a band pass response includes a first LNA in series with a second LNA. The device further includes multiple outputs coupled to the second LNA. Each of the outputs is capable of being active at the same time. The device further includes a high pass filter coupled between the first LNA and the second LNA.
Abstract:
Omni-band amplifiers support multiple band groups. In an exemplary design, an apparatus (e.g., a wireless device, an integrated circuit, etc.) includes at least one gain transistor and a plurality of cascode transistors for a plurality of band groups. Each band group covers a plurality of bands. The gain transistor(s) receive an input radio frequency (RF) signal. The cascode transistors are coupled to the gain transistor(s) and provide an output RF signal for one of the plurality of band groups. In an exemplary design, the gain transistor(s) include a plurality of gain transistors for the plurality of band groups. One gain transistor and one cascode transistor are enabled to amplify the input RF signal and provide the output RF signal for the selected band group. The gain transistors may be coupled to different taps of a single source degeneration inductor or to different source degeneration inductors.
Abstract:
An apparatus includes an auxiliary mixing path configured to receive a differential signal. The apparatus also includes a filter having an input coupled to the auxiliary mixing path.
Abstract:
A radio frequency (RF) front end having multiple low noise amplifiers modules is disclosed. In an exemplary embodiment, an apparatus includes at least one first stage amplifier configured to amplify received carrier signals to generate at least one first stage carrier group. Each first stage carrier group includes a respective portion of the carrier signals. The apparatus also includes second stage amplifiers configured to amplify the first stage carrier groups. Each second stage amplifier configured to amplify a respective first stage carrier group to generate two second stage output signals that may be output to different demodulation stages where each demodulation stage demodulates a selected carrier signal.
Abstract:
Expandable transceivers and receivers support operation on multiple frequency bands and multiple carriers. In an exemplary design, an apparatus (e.g., a wireless device, an integrated circuit (IC) chip, or circuit module) includes a low noise amplifier (LNA) and interface circuit. The LNA resides on an IC chip and includes a first/on-chip output and a second/off-chip output. The interface circuit also resides on the IC chip, is coupled to the second output of the LNA, and provides an amplified RF signal outside of the IC chip. The apparatus may further include a buffer, load circuit, and downconverter circuit. The buffer resides on the IC chip, is coupled to the first output of the LNA, and receives a second amplified RF signal from outside of the IC chip. The load circuit is coupled to the first output of the LNA. The downconverter circuit is coupled to the load circuit.
Abstract:
An amplifier may include multiple stages, with the multiple stages arranged in a fan-out configuration. The fan-out configuration provides multiple amplified signals at multiple amplifier output nodes, which may be coupled to a shared set of downconverters. The shared downconverters may support processing of only a smaller bandwidth than the largest possible bandwidth of an input RF signal input to the amplifier. For example, the downconverters may support a bandwidth matching a smallest bandwidth of a supported RF signal. For example, when the amplifier is intended to support 5G mmWave RF signals and 5G sub-6 GHz RF signals, the downconverters may each individually support a bandwidth of carriers in the 5G sub-6 GHz RF signals but not individually support the entire bandwidth of a possible 5G mmWave RF signal.
Abstract:
Embodiments of this disclosure may include a receiver with a reconfigurable processing path for different signal conditions. Such a receiver may reconfigure between a mixer-first configuration and an amplifier-first configuration. In the mixer-first configuration, an RF input signal is not passed through an LNA for amplification before processing the RF input signal for downconversion to baseband and eventual extraction of the information in the signal. In the amplifier-first configuration, an RF input signal is passed through an LNA for amplification before processing the RF input signal for downconversion to baseband and eventual extraction of the information in the signal. Reconfiguring the receiver between mixer-first and amplifier-first configurations may be performed based on detection of jammer signals and/or measurement of signal-to-noise ratio (SNR).