Abstract:
Methods and apparatus are provided for using a breakpoint determination unit to examine an artificial nervous system. One example method generally includes operating at least a portion of the artificial nervous system; using the breakpoint determination unit to detect that a condition exists based at least in part on monitoring one or more components in the artificial nervous system; and at least one of suspending, examining, modifying, or flagging the operation of the at least the portion of the artificial nervous system, based at least in part on the detection.
Abstract:
Certain aspects of the present disclosure support operating simultaneously multiple super neuron processing units in an artificial nervous system, wherein a plurality of artificial neurons is assigned to each super neuron processing unit. The super neuron processing units can be interfaced with a memory for storing and loading synaptic weights and plasticity parameters of the artificial nervous system, wherein organization of the memory allows contiguous memory access.
Abstract:
An apparatus includes a hardware sensor array including a plurality of pixels arranged along at least a first dimension and a second dimension of the array, each of the pixels capable of generating a sensor reading. A hardware scanning window array includes a plurality of storage elements arranged along at least a first dimension and a second dimension of the hardware scanning window array, each of the storage elements capable of storing a pixel value based on one or more sensor readings. Peripheral circuitry for systematically transfers pixel values, based on sensor readings, into the hardware scanning window array, to cause different windows of pixel values to be stored in the hardware scanning window array at different times. Control logic coupled to the hardware sensor array, the hardware scanning window array, and the peripheral circuitry, provides control signals to the peripheral circuitry to control the transfer of pixel values.
Abstract:
Methods and apparatus are provided for determining synapses in an artificial nervous system based on connectivity patterns. One example method generally includes determining, for an artificial neuron, an event has occurred; based on the event, determining one or more synapses with other artificial neurons based on a connectivity pattern associated with the artificial neuron; and applying a spike from the artificial neuron to the other artificial neurons based on the determined synapses. In this manner, the connectivity patterns (or parameters for determining such patterns) for particular neuron types, rather than the connectivity itself, may be stored. Using the stored information, synapses may be computed on the fly, thereby reducing memory consumption and increasing memory bandwidth. This also saves time during artificial nervous system updates.
Abstract:
Techniques disclosed herein utilize a vision sensor that integrates a special-purpose camera with dedicated computer vision (CV) computation hardware and a dedicated low-power microprocessor for the purposes of detecting, tracking, recognizing, and/or analyzing subjects, objects, and scenes in the view of the camera. The vision sensor processes the information retrieved from the camera using the included low-power microprocessor and sends “events” (or indications that one or more reference occurrences have occurred, and, possibly, associated data) for the main processor only when needed or as defined and configured by the application. This allows the general-purpose microprocessor (which is typically relatively high-speed and high-power to support a variety of applications) to stay in a low-power (e.g., sleep mode) most of the time as conventional, while becoming active only when events are received from the vision sensor.
Abstract:
Systems and methods for harvesting dissipated heat from integrated circuits (ICs) in electronic devices into electrical energy for providing power for the electronic devices are disclosed. In one embodiment, energy transferred from one or more ICs in the form of dissipated heat is harvested to convert at least a portion of this dissipated heat into electricity. This power can be used to provide power to the ICs to reduce overall power consumption by the electronic device. The harvested dissipated heat can be supplied to ICs in the electronic device to provide power to the ICs. Alternatively, or in addition, the harvested dissipated heat can be stored in an energy storage device to provide power to the ICs at a later time.