摘要:
Provided is a wireless communication device which can improve the notification accuracy of the channel state information (CSI) without straining the feedback circuit. In this device, a channel estimator (105) uses a pilot signal input from a wireless receiver (102) to estimate the channel and obtain a plurality of path gains in each of a plurality of delay periods. Then, the channel estimator (105) outputs the plurality of path gains to a quantizer (107). The quantizer (107) quantizes the plurality of path gains in the number of notification bits corresponding to each of the plurality of delay periods based on the correspondence of the delay period and the number of notification bits input from a setting unit (106).
摘要:
A radio communication device capable of obtaining the frequency diversity effect when a CDD is used for the open-loop transmission. A CDD control information determination section (101) on the radio communication device determines the number of cyclic delay shift samples given to transmission data to be transmitted from each of antennas (109-1) to (109-4) such that a combination of two antennas maximizing the difference between the number of two cyclic delay shift samples given to the transmission data to be transmitted from each of two antennas is changed sequentially over time in all the combinations of any two antennas among the antennas (109-1) to (109-4). Cyclic delay sections (105-1) to (105-4) give each different cyclic delay to each data symbol assigned to a plurality of sub-carriers among multiplexed signals that are input from an arrangement section (104) according to the number of cyclic delay shift samples to be input from the CDD control information determination section (101).
摘要:
Provided is a radio communication device which can reduce ISI caused by destruction of an orthogonal DFT matrix even when an SC-FDMA signal is divided into a plurality of clusters and the clusters are respectively mapped to discontinuous frequency bands. The radio communication device includes a DFT unit (110), a division unit (111), and a mapping unit (112). The DFT unit (110) uses the DFT matrix to execute a DFT process on a symbol sequence in a time region to generate a signal (SC-FDMA signal) of the frequency region. The division unit (111) generates a plurality of clusters by dividing the SC-FDMA signal with a partially orthogonal bandwidth corresponding to the vector length of some of the column vectors constituting the DFT matrix used in the DFT unit (110) and orthogonally intersecting at least partially. The mapping unit (112) maps the clusters to discontinuous frequency bands.
摘要:
Provided are a wireless communication terminal apparatus and a wireless communication method that can preclude the recognition mismatch in which the reference formats of different UL grants are recognized between the wireless communication terminal apparatus and a wireless communication base station apparatus. For the PHR calculation of a PUSCH in a CC in which no UL grant is present, a UL grant, which was used for calculating the PHR in another CC having the same subframe number as the PUSCH, is used. For example, as to a subframe number=#1, the UL grant of CC #0 is used for calculating the PHR of CC #2 in which no UL grant is present.
摘要:
It is possible to provide a novel pilot transmission method which can calculate an accurate channel estimation value, a MIMO transmission device using the pilot transmission method, and a MIMO reception device which communicates with the MIMO transmission device. The MIMO transmission device (100) includes phase adjustment units (130-1, 130-2) which are controlled by a pilot transmission control unit (170) to multiply parallel pilot signals by a phase adjustment coefficient group so as to adjust the pilot signal transmission timing. The pilot transmission control unit (170) differentiates the order of the transmitting antennas in accordance with the pilot transmission timing between an even-number subcarrier group and an odd-number subcarrier group. At a reception side, a path not influenced by the inter-path interference is extracted for each of the combinations of the transmitting antennas and the subcarrier groups. A channel estimation value is calculated according to the extracted path so as to improve the channel estimation accuracy.
摘要:
A wireless communication mobile station apparatus wherein the accuracy of measuring the communication quality can be improved. In this apparatus, a desired signal power measuring part (212) uses a reference signal received from a local-cell reference signal processing part (211) to measure the power of a desired signal addressed to the local apparatus. An interference signal power measuring part (214) uses a reference signal received from an other-cell reference signal processing part (213) to measure an other-cell interference signal power removable by retransmission. An interference power calculating part (215) then uses a reference signal received from the separating part (203), the desired signal power received from the desired signal power measuring part (212) and the removable-by-retransmission other-cell interference signal power received from the interference signal power measuring part (214) to calculate an interference power that is a sum of the removable-by-retransmission other-cell interference signal power and the noise power. A communication quality generating part (216) then uses the desired signal power (S) and the sum of the removable-by-retransmission other-cell interference signal power and the noise power to generate communication quality information of the signal addressed to the local apparatus.
摘要:
There is provided a wireless communication device capable of improving a decoding performance by using an optimal selection criterion for a start address and a read direction in a circular buffer. An interlacer (13) writes an interleaved and interlaced bit sequence into a circular buffer (14). An RV decision unit (109) decides the read start address and read direction of the circular buffer (14) based on the number of non-transmitted systematic bits, the number of non-transmitted important parity bits, and/or the number of non-transmitted unimportant parity bits. A read control unit (110) controls the read start address and read end address of the circular buffer (14). A read unit (15) is controlled by the read control unit (110) to continuously read encoded bits from the circular buffer (14).
摘要:
Provided are a wireless communication terminal apparatus and a wireless communication method that can preclude the recognition mismatch in which the reference formats of different UL grants are recognized between the wireless communication terminal apparatus and a wireless communication base station apparatus. For the PHR calculation of a PUSCH in a CC in which no UL grant is present, a UL grant, which was used for calculating the PHR in another CC having the same subframe number as the PUSCH, is used. For example, as to a subframe number=#1, the UL grant of CC #0 is used for calculating the PHR of CC #2 in which no UL grant is present.
摘要:
Provided is a radio communication device which can reduce ISI caused by destruction of an orthogonal DFT matrix even when an SC-FDMA signal is divided into a plurality of clusters and the clusters are respectively mapped to discontinuous frequency bands. The radio communication device includes a DFT unit (110), a division unit (111), and a mapping unit (112). The DFT unit (110) uses the DFT matrix to execute a DFT process on a symbol sequence in a time region to generate a signal (SC-FDMA signal) of the frequency region. The division unit (111) generates a plurality of clusters by dividing the SC-FDMA signal with a partially orthogonal bandwidth corresponding to the vector length of some of the column vectors constituting the DFT matrix used in the DFT unit (110) and orthogonally intersecting at least partially. The mapping unit (112) maps the clusters to discontinuous frequency bands.
摘要:
There is provided a wireless communication device capable of improving a decoding performance by using an optimal selection criterion for a start address and a read direction in a circular buffer. An interlacer (13) writes an interleaved and interlaced bit sequence into a circular buffer (14). An RV decision unit (109) decides the read start address and read direction of the circular buffer (14) based on the number of non-transmitted systematic bits, the number of non-transmitted important parity bits, and/or the number of non-transmitted unimportant parity bits. A read control unit (110) controls the read start address and read end address of the circular buffer (14). A read unit (15) is controlled by the read control unit (110) to continuously read encoded bits from the circular buffer (14).