Abstract:
A spacer for insulating glazing units is presented. The spacer has a polymeric main body with features that include two parallel side walls that are connected to one another by an inner wall and an outer wall. The side walls, the inner wall, and the outer wall surround a hollow chamber. According to one aspect, the polymeric main body has a glass fiber content of 0 wt.-% to 40 wt.-%, to which 0.5 wt.-% to 1.5 wt.-% of a foaming agent is added to form hollow spaces that provide a weight reduction of the polymeric main body of 10 wt.-% to 20 wt.-%.
Abstract:
A method for producing a triple insulating glazing unit is presented. According to the method, one pane is inserted into a groove of a spacer that is peripherally shaped to form a spacer frame to enframe the pane. A first pane and a second pane are connected to corresponding contact surfaces of the spacer frame by way of an upper edge and lateral edges of the first and second panes. Lower edges of the first and second panes are bent outward. Formed interpane spaces are filled from below with a protective gas, and the arrangement of the panes and the spacer frame is sealed and pressed together.
Abstract:
A spacer for insulating glazing units is described. The sealing arrangement includes a polymer base; which includes two pane contact surfaces, a glazing interior space surface and an outer surface and an extruded profiled seal on the outer surface, the extruded profiled seal and the polymer base being co-extruded.
Abstract:
A spacer for insulated glazing units having at least one polymeric main body with a wall thickness d having a first pane contact surface and a second pane contact surface running parallel thereto, one first glazing interior surface, one second glazing interior surface, one outer surface, one first hollow chamber, and one second hollow chamber. A groove for receiving a pane runs parallel to the first pane contact surface and the second pane contact surface between the first glazing interior surface and the second glazing interior surface. The first hollow chamber adjoins the first glazing interior surface and the second hollow chamber adjoins the second glazing interior surface. The lateral flanks of the groove are formed by the walls of the first hollow chamber and the second hollow chamber, and the wall thickness d′ in the region of the lateral flanks is less than the wall thickness d of the polymeric main body.