DISSOLVABLE BALLAST FOR UNTETHERED DOWNHOLE TOOLS

    公开(公告)号:US20250129680A1

    公开(公告)日:2025-04-24

    申请号:US18989597

    申请日:2024-12-20

    Abstract: A method involves mixing metallic particles and a liquefied polymer to form a mixture, placing the mixture within a mold, placing a magnet in the vicinity of the mixture within the mold, thereby causing the metallic particles to position themselves in a self-assembly formation within the mixture in response to a magnetic field generated by the magnet, and solidifying the liquefied polymer, such that a polymer matrix is formed. The metallic particles are distributed and secured in the self-assembly formation throughout the polymer matrix, thereby forming a ballast for an untethered downhole tool configured to be lowered into a well formed in a subterranean formation. The polymer matrix is configured to dissolve in response to being exposed to downhole fluid within the well at specified downhole conditions.

    Semi-permanent downhole sensor tool

    公开(公告)号:US11879328B2

    公开(公告)日:2024-01-23

    申请号:US17394813

    申请日:2021-08-05

    CPC classification number: E21B47/138 E21B47/04 E21B47/26

    Abstract: A method and a system for collecting data at a fixed point in a wellbore are provided. An exemplary method includes dropping an untethered measurement tool (UMT) in the wellbore, switching a first magnet to drop a ballast from the UMT at a ballast drop condition, switching a second magnet to attach the UMT to a wall of the wellbore at a wall attachment condition. Data is collected in the UMT while the UMT is attached to the wall of the wellbore. The second magnet is switched to release the UMT from the wall of the wellbore at a wall release condition. The UMT is collected from the wellbore and the data is downloaded from the UMT.

    Method and device for measuring fluid properties using an electromechanical resonator

    公开(公告)号:US10317557B2

    公开(公告)日:2019-06-11

    申请号:US15228241

    申请日:2016-08-04

    Abstract: A method and device are described for making in situ measurements of the density and viscosity of downhole fluids at subterranean wells. An oscillator circuit is deployed in the well comprising an amplifier, a feedback loop, and an electromechanical resonator. The electromechanical resonator is a component in the feedback loop of the oscillator circuit, and has a resonance mode that determines the frequency of the oscillator circuit. The electromechanical resonator is also in contact with the fluid such that the density and viscosity of the fluid influence the resonant frequency and damping of the resonator. The frequency of the oscillator is measured by a microcontroller. In one embodiment, the oscillator circuit periodically stops driving the electromechanical resonator such that the oscillation decays and the rate of decay is also measured by the microcontroller. The density and viscosity of the fluid are determined from the frequency and rate of decay of the oscillation. This measurement technique provides a faster response time to fluid changes than is possible with conventional measurement methods, and the fast response time opens up new applications for downhole viscosity and density measurements, including determining PVT characteristics, phase diagrams, and flow rates.

Patent Agency Ranking