Abstract:
A method of preparing an anode for a Li-ion Battery comprises mixing metal particles containing at least one of Ge, Sn and Si particles with carbon particles to form a mixture, and deoxidizing the metal particles by heating the mixture in a vacuum atmosphere in a range of 10−3 to 10−6 mbar for 60-100 hours at a temperature in a range of 150 to 350° C. to form a deoxidized mixture, the deoxidation improves the Li ion absorption performance of the anode.
Abstract:
Methods for manufacturing multi-functional electrode (MFE) devices for fast-charging of energy-storage devices are provided. The method includes assembling first MFE structure for forming a suitable electrochemical half-couple, the first MFE structure having a first fast-charging component (FCC) and a first MFE assembly and a counter-electrode structure for forming a complementary electrochemical half-couple and supplying an internal voltage controller (IVC) for applying a bias potential to the first MFE structure and/or the counter-electrode structure, the bias potential is set in accordance with the first MFE structure and said counter-electrode structure. The IVC is configured to regulate an intra-electrode potential gradient between the first FCC and the first MFE assembly to control a charge rate from the first FCC to the first MFE assembly.
Abstract:
The present invention discloses multi-functional electrode (MFE) devices for fast-charging of energy-storage devices. MFE devices include: a multi-functional electrode (MFE) device for fast-charging of energy-storage devices, the device including: a first MFE structure for forming a suitable electrochemical half-couple, the first MFE structure having a first fast-charging component (FCC) and a first MFE assembly; a counter-electrode structure for forming a complementary electrochemical half-couple to the first MFE structure; and an internal voltage controller (IVC) for applying a bias potential to the first MFE structure and/or the counter-electrode structure, whereby the bias potential is set in accordance with the chemical nature of the first MFE structure and the counter-electrode structure. Preferably, the IVC is configured to regulate an intra-electrode potential gradient between the first FCC and the first MFE assembly, thereby controlling a charge rate from the first FCC to the first MFE assembly.