Abstract:
A display device is provided. The display device comprises a transistor layer disposed on a substrate, a light emitting element layer disposed on the transistor layer, a wavelength conversion layer disposed on the light emitting element layer, and a first capping layer disposed on the wavelength conversion layer, wherein the first capping layer includes a base, and hollow particles mixed in the base. The base includes polysilazane, the polysilazane including siloxane.
Abstract:
A display device includes a light emitting element disposed on a substrate. A color conversion layer is disposed on the light emitting element, the color conversion layer including color conversion particles that convert light of a first color emitted from the light emitting element into light of a second color. An insulating layer is disposed on the color conversion layer. The insulating layer includes a first inorganic layer overlapping the color conversion layer, a second inorganic layer disposed on the first inorganic layer, and a third inorganic layer disposed on the second inorganic layer. A second porosity of the second inorganic layer is greater than a first porosity of the first inorganic layer. A second porosity of the second inorganic layer is greater than a third porosity of the third inorganic layer.
Abstract:
Provided are a wavelength conversion layer and a display device. A color conversion element comprises: a wavelength conversion layer; one or more low refractive layers which are disposed on and/or under the wavelength conversion layer and have a lower refractive index than the wavelength conversion layer; and one or more capping layers which are disposed between the wavelength conversion layer and the low refractive layers and/or on a surface opposite to a surface of each of the low refractive layers which faces the wavelength conversion layer.
Abstract:
A display device includes a display area including a first light-emitting area and a second light-emitting area; a peripheral area adjacent to the display area; pixels which emit incident light; an encapsulation layer covering the pixels; a first color-converting pattern corresponding to the first light-emitting area and having a refractivity; a transmission pattern corresponding to the second light-emitting area and through which the incident light is transmitted; a low refractivity layer is in the display area and facing the encapsulation layer with each of the first color-converting pattern and the transmission pattern therebetween, the low refractivity layer including: a resin and a hollow particle which define a refractivity lower than the refractivity of the first color-converting pattern; and a first dam structure in the peripheral area and spaced apart from the display area, the first dam structure and the transmission pattern being portions of a same material layer.
Abstract:
Provided are a dye compound, a composition comprising the dye compound, and a display device using the dye compound. The dye compound is represented by Formula 1.
Abstract:
A liquid crystal display is provided. A liquid crystal display comprising a first substrate which comprises a display area and a non-display area, a second substrate which faces the first substrate, a sealing member which is disposed in the non-display area between the first substrate and the second substrate, wherein the first substrate comprises a light-shielding pattern, a column spacer which is protruded from the light-shielding pattern toward the second substrate to maintain an interval between the first substrate and the second substrate, an opening which is disposed in the light-shielding pattern, and overlapping the sealing member.
Abstract:
A liquid crystal display (LCD) includes: a first pixel configured to emit first light having a first wavelength; a second pixel configured to emit second light having a second wavelength longer than the first wavelength; a third pixel configured to emit third light having a third wavelength longer than the second wavelength; and a liquid crystal (LC) panel in which driving voltages for maximum transmittances for the first light, the second light, and the third light are different from each other. The LCD is configured to apply different voltages to pixel electrodes of the first pixel, the second pixel, and the third pixel, respectively, such that the first light, the second light, and the third light respectively emitted by the first pixel, the second pixel, and the third pixel are transmitted at the respective maximum transmittances.
Abstract:
A liquid crystal composition includes a first class including a first compound represented by Chemical Formula 1, wherein the first compound is 13 to 18 parts by weight based on 100 parts by weight of the total liquid crystal composition, and a second compound represented by Chemical Formula 2, wherein the second compound is 8 to 13 parts by weight based on 100 parts by weight of the total liquid crystal composition, a second class including a third compound represented by Chemical Formula 3. Chemical Formulas 1, 2, and 3 are represented by: and wherein R and R′ are, independently of each other, a hydrogen atom, or an unsubstituted or substituted C1 to C7 alkyl group.
Abstract:
A liquid crystal composition includes a first compound expressed by following Chemical Formula 1 and about 0.001 wt % to about 0.05 wt % of a second compound expressed by following Chemical Formula 2, where A and B are a cyclo-hexyl group or a phenyl group, m is 0 to 4, n is 1 to 2, X is an alkyl group or an alkoxy group, and Y is one or two fluorine (F) or chlorine (Cl) atoms, and where n is 0 to 2, I is 0 to 1, Z is a halogen group, an alkyl group, or an alkoxy group, and A and A′ are methyl groups that do not independently exist.