Abstract:
A recognition apparatus and a training method are provided. The recognition apparatus includes a memory configured to store a neural network including a previous layer of neurons, and a current layer of neurons that are activated based on first synaptic signals and second synaptic signals, the first synaptic signals being input from the previous layer, and the second synaptic signals being input from the current layer. The recognition apparatus further includes a processor configured to generate a recognition result based on the neural network. An activation neuron among the neurons of the current layer generates a first synaptic signal to excite or inhibit neurons of a next layer, and generates a second synaptic signal to inhibit neurons other than the activation neuron in the current layer.
Abstract:
An interfacing apparatus and a user input processing method are provided. The interfacing apparatus may group event generation elements and output an address of a group in which an event occurs based on a generated group event signal. The interfacing apparatus may include a grouper configured to generate a group event signal in which a plurality of event generation elements corresponding to a plurality of pixels in at least one event sensor are grouped based on one or more events occurring with respect to the plurality of pixels, and an interface configured to output an address of the group of the plurality of event generation elements in which the one or more event occurs based on the generated group event signal
Abstract:
A method and an apparatus for displaying a screen in response to an event related to a motion of an external object, are provided. The method includes generating an event signal in response a motion of an external object being sensed, sensing a movement of the external object relative to an apparatus based on the event signal, and displaying a screen based on the movement of the external object.
Abstract:
A user interface apparatus and a method of improving user interface are provided. The user interface apparatus may detect a change in an incident light and may control a display to represent the detected change in the light to be overlaid on image content. Provided is a user interface apparatus including: a display configured to display image content; a detector configured to detect a change in an incident light; and a controller configured to control the display to overlay the detected change in the light on the image content
Abstract:
An event filtering device and a motion recognition device using thereof are provided. The motion recognition device includes an emitter configured to emit an infrared ray in a pattern; a detector configured to detect events in a visible ray area and an infrared ray area; a filter configured to determine whether at least one portion of the detected events is detected using the infrared ray in the pattern, and filter the detected events based on a result of the determination; and a motion recognizer configured to perform motion recognition based on a detected event accepted by the filter.
Abstract:
A proximity sensor and a proximity sensing method using an event-based vision sensor are provided. The proximity sensor may include a point identification (ID) unit which identifies a point at which an output light output from a focused light source is reflected from an object in an image taken by the proximity sensor; and a distance determination unit which determines a distance between the object and the proximity sensor based on a position of the point.
Abstract:
A proximity sensor and proximity sensing method using a change in light quantity of a reflected light are disclosed. The proximity sensor may include a quantity change detection unit which detects a change in a quantity of reflected light which is output light which has been reflected by an object, where an intensity of the output light changes, and a proximity determination unit which determines a proximity of the object to the quantity change detection unit based on a change in the intensity of the output light and the detected change in the quantity of the reflected light.
Abstract:
Provided is a neuromorphic signal processing device for locating a sound source using a plurality of neuron circuits, the neuromorphic signal processing device including a detector configured to output a detected spiking signal using a detection neuron circuit corresponding to a predetermined time difference, in response to a first signal and a second signal containing an identical input spiking signal with respect to the predetermined time difference, for each of a plurality of predetermined frequency bands, a multiplexor configured to output a multiplexed spiking signal corresponding to the predetermined time difference based on a plurality of the detected spiking signals output from a plurality of neuron circuits corresponding to the plurality of frequency bands, and an integrator configured to output an integrated spiking signal corresponding to the predetermined time difference, based on a plurality of the multiplexed spiking signals corresponding to a plurality of predetermined time differences.