Image sensor and method of operating

    公开(公告)号:US11920982B2

    公开(公告)日:2024-03-05

    申请号:US17989605

    申请日:2022-11-17

    CPC classification number: G01J3/2823 G01J3/0208 G01J3/0229 G01J3/18 G01J3/4412

    Abstract: Optical spectrometers may be used to determine the spectral components of electromagnetic waves. Spectrometers may be large, bulky devices and may require waves to enter at a nearly direct angle of incidence in order to record a measurement. What is disclosed is an ultra-compact spectrometer with nanophotonic components as light dispersion technology. Nanophotonic components may contain metasurfaces and Bragg filters. Each metasurface may contain light scattering nanostructures that may be randomized to create a large input angle, and the Bragg filter may result in the light dispersion independent of the input angle. The spectrometer may be capable of handling about 200 nm bandwidth. The ultra-compact spectrometer may be able to read image data in the visible (400-600 nm) and to read spectral data in the near-infrared (700-900 nm) wavelength range. The surface area of the spectrometer may be about 1 mm2, allowing it to fit on mobile devices.

    Hybrid visible/NIR and LWIR sensor with resistive microbolometer

    公开(公告)号:US11454546B2

    公开(公告)日:2022-09-27

    申请号:US16937572

    申请日:2020-07-23

    Abstract: A pixel for an image sensor includes a resistive microbolometer sensor portion, a visible image sensor portion, and an output path. The resistive microbolometer sensor portion outputs a signal corresponding to an infrared (IR) image sensed by the resistive microbolometer sensor portion. The resistive microbolometer sensor portion uses no bias current. The visible image sensor portion outputs a signal corresponding to a visible image sensed by the visible image sensor portion. The output path is shared by the resistive microbolometer sensor portion and the visible image sensor portion, and may be controlled to selectively output the signal corresponding to the IR image, the signal corresponding to the visible image, or a fused image based on the IR image and the visible image. The resistive microbolometer sensor portion may sense a near infrared image or a longwave infrared image.

    OPTICAL DEVICE FOR A THERMAL SENSOR AND A HYBRID THERMAL SENSOR

    公开(公告)号:US20220191410A1

    公开(公告)日:2022-06-16

    申请号:US17689883

    申请日:2022-03-08

    Abstract: An imaging device includes: a sensor to detect a first target spectrum, the first target spectrum corresponding to a thermal imaging region of an infrared (IR) spectrum; and an optical device to transmit external light to the sensor, the optical device including: a substrate; and a plurality of nanostructures on the substrate, and to collimate at least the first target spectrum in the external light on the sensor. The plurality of nanostructures are spaced apart from each other, and at least one of the plurality of nanostructures has a different geometric size from that of another.

    Optical device for a thermal sensor and a hybrid thermal sensor

    公开(公告)号:US11303827B2

    公开(公告)日:2022-04-12

    申请号:US16906917

    申请日:2020-06-19

    Abstract: An imaging device includes: a sensor to detect a first target spectrum, the first target spectrum corresponding to a thermal imaging region of an infrared (IR) spectrum; and an optical device to transmit external light to the sensor, the optical device including: a substrate; and a plurality of nanostructures on the substrate, and to collimate at least the first target spectrum in the external light on the sensor. The plurality of nanostructures are spaced apart from each other, and at least one of the plurality of nanostructures has a different geometric size from that of another.

    HYBRID SENSOR SYSTEM AND METHOD FOR PROVIDING 3D IMAGING

    公开(公告)号:US20210325541A1

    公开(公告)日:2021-10-21

    申请号:US16940308

    申请日:2020-07-27

    Abstract: Provided is a 3D depth sensing system and method of providing an image based on a hybrid sensing array. The 3D sensing system including a light source configured to emit light, a hybrid sensing array comprising a 2D sensing region configured to detect ambient light reflected from an object and a 3D depth sensing region configured to detect the light emitted by the light source and reflected from the object, a metalens on the hybrid sensing array, the metalens being configured to direct the ambient light reflected from the object towards the 2D sensing region, and to direct the light emitted by the light source and reflected from the object towards the 3D depth sensing region, and a processing circuit configured to combine 2D image information provided by the 2D sensing region and 3D information provided by the 3D depth sensing region to generate a combined 3D image.

Patent Agency Ranking