Abstract:
According to an embodiment of the present invention, a method whereby a terminal receives scheduling data in a wireless communication system using beamforming comprises the processes of: receiving scheduling data via a first scheduling channel from a first base station; and receiving scheduling data via at least one second scheduling channel, by using at least one receiving beam from at least one second base station that cooperates (cooperate) with the first base station.
Abstract:
A method and apparatus for managing mobility of a terminal by a first base station in a communication system. The first base station assigns a first address to the terminal located in a cell managed by the first base station and establishes a session to an external server that communicates with the terminal using the first address. If the terminal moves to a cell managed by a second base station different from the first base station, the first base station determines whether information about a second address assigned to the terminal by the second base station is received within a predetermined time. Upon receiving the information about the second address within the predetermined time, the first base station transmits data received from the external server to the terminal through the second base station using the information about the second address.
Abstract:
A method and an apparatus of cooperating with a plurality of base stations in a wireless communication system. A cloud cell is configured with a plurality of base stations that cooperate with each other for a mobile station and synchronizes user contexts for serving the mobile station among the plurality of base stations included in the cloud cell, and the plurality of base stations cooperate with each other to provide a communication service to the mobile station. The present disclosure reduces generation of a handover when the mobile station moves between base stations, and increases the data yield of the mobile station by transmitting and receiving data in cooperation with base stations in a cloud cell at a shaded area or a cell border.
Abstract:
A base station, a wireless terminal and a communication method of a wireless communication system are provided. The base station includes a receiver for receiving a signal from a wireless terminal or another base station, a transmitter for transmitting a signal to the wireless terminal or the another base station, and a controller for generating resource scheduling or control information for communication of the wireless terminal in a cell including at least two base stations included in a moving path of the wireless terminal and for transmitting the generated resource scheduling or control information to the wireless terminal and at least one of the base stations included in the cell.
Abstract:
A method and an apparatus for requesting Uplink (UL) resource allocation in a beamforming-based wireless communication system are provided. A Mobile Station (MS) acquires UL beam pair information indicating a best MS transmit beam and a best Base Station (BS) receive beam for UL transmission, determines a best BS transmit beam for Downlink (DL) reception, selects a Bandwidth Request (BR) code and a BR channel from available BR codes and a designated BR transmit resource, wherein at least one of the BR code and the BR channel is mapped to at least one of the best BS receive beam and the best BS transmit beam, and transmits the selected BR code to a BS over the selected BR channel. The BS allocates a UL resource for transmission of a BR message and UL data considering the best BS receive beam.
Abstract:
Beam selection is provided. A method for handover in a mobile station includes sending a scan request message for scanning a downlink (DL) beam with respect to a serving base station (BS) and a neighboring BS, to the serving BS, and receiving a scan response message; determining the DL beam for the MS by performing scanning with the serving BS and the neighboring BS based on the scan response message; sending a scan report message comprising a result of the scanning to the serving BS; when receiving an air-HO request message from the serving BS, generating an air-HO response message comprising information of a neighboring BS to which the MS hands over based on the air-HO request message; performing beam selection with the neighboring BS of the handover based on the air-HO request message; and performing the handover.
Abstract:
A method for performing policy and charging control (PCC) in a decentralized network architecture includes performing, by a first base station (BS), a procedure of initial network entry of a mobile station (MS), determining, by the first BS, first PCC rules for the MS by using at least one of subscription information and application information regarding the MS, enforcing, by the first BS, control and charging for data communication of the MS based on the first PCC rules, generating second PCC rules to be applied to a second BS and transferring the second PCC rules to the second BS,when detecting a handover of the MS to the second BS, and requesting the MS to connect to the second BS. Other embodiments including a method for performing PCC in the seconds BS, and the first BS and the second BS for performing PCC are disclosed.
Abstract:
A method and apparatus for managing mobility of a terminal by a first base station in a communication system. The first base station assigns a first address to the terminal located in a cell managed by the first base station and establishes a session to an external server that communicates with the terminal using the first address. If the terminal moves to a cell managed by a second base station different from the first base station, the first base station determines whether information about a second address assigned to the terminal by the second base station is received within a predetermined time. Upon receiving the information about the second address within the predetermined time, the first base station transmits data received from the external server to the terminal through the second base station using the information about the second address.
Abstract:
A method and an apparatus of cooperating with a plurality of base stations in a wireless communication system. A cloud cell is configured with a plurality of base stations that cooperate with each other for a mobile station and synchronizes user contexts for serving the mobile station among the plurality of base stations included in the cloud cell, and the plurality of base stations cooperate with each other to provide a communication service to the mobile station. The present disclosure reduces generation of a handover when the mobile station moves between base stations, and increases the data yield of the mobile station by transmitting and receiving data in cooperation with base stations in a cloud cell at a shaded area or a cell border.
Abstract:
A Hybrid Automatic Repeat reQuest (HARQ) method and an apparatus in a communication system are provided. The method includes receiving, by a Subscriber Station (SS), first data from at least one first member Base Station (BS) among member BSs of a cooperative cell, when the cooperative cell is configured with the member BSs to provide a communication service to the SS, generating a response signal indicating a reception result of the first data, and transmitting the response signal to at least one predefined second member BS from among the member BSs. The member BSs include a master BS for controlling communication of the member BSs and at least one slave BS for communicating with the SS under the control of the master BS.