Abstract:
Ambient air is compressed into a compressed ambient gas flow with a main air compressor. The compressed ambient gas flow having a compressed ambient gas flow rate is delivered to a turbine combustor and mixed with a fuel stream having a fuel stream flow rate and a portion of a recirculated low oxygen content gas flow to form a combustible mixture. The combustible mixture is burned and forms the recirculated low oxygen content gas flow that drives a turbine. A portion of the recirculated low oxygen content gas flow is recirculated from the turbine to the turbine compressor using a recirculation loop. The compressed ambient gas flow rate and the fuel stream flow rate are adjusted to achieve substantially stoichiometric combustion. An excess portion, if any, of the compressed ambient gas flow is vented. A portion of the recirculated low oxygen content gas flow is extracted using an extraction conduit.
Abstract:
A turbine airfoil is disclosed. The airfoil includes one of a turbine shroud, liner, vane or blade, including an airfoil sidewall having a film-cooling hole that extends between an airfoil cooling circuit and an airfoil surface. The airfoil also includes an insert disposed in the film-cooling channel having a body. The body has a proximal end configured for disposition proximate the airfoil surface and a distal end. The body is also configured to define a passageway that extends between the distal end and proximal end upon disposition in the film-cooling hole.
Abstract:
A split heat recovery steam generator (HRSG) arrangement including a first HRSG coupled to a turbine and thereby receptive of a portion of the exhaust gases to deliver the portion of the exhaust gases to a compressor, a second HRSG coupled to the turbine and thereby receptive of a remaining portion of the exhaust gases, which includes an NOx catalyst and a CO catalyst sequentially disposed therein to remove NOx and CO from the exhaust gases and an air injection apparatus to inject air into the second HRSG between the NOx catalyst and the CO catalyst to facilitate CO consumption at the CO catalyst.
Abstract:
A power plant arrangement and method of operation are provided. The power plant arrangement comprises at lease one main air compressor and one or more gas turbine assemblies. Each assembly comprises a turbine combustor for mixing a portion of a compressed ambient gas flow with a portion of a recirculated low oxygen content gas flow and a fuel stream, and burning the combustible mixture to form the recirculated low oxygen content flow. The assembly further comprises a turbine compressor, fluidly connected to the turbine combustor, and connected to a turbine shaft that is arranged to be driven by rotation of a turbine. The assembly also comprises a recirculation loop for recirculating at least a portion of the recirculated low oxygen content gas flow from the turbine to the turbine compressor.
Abstract:
A power plant and method of operation are provided. The power plant comprises at least one main air compressor and at least one gas turbine assembly. Each gas turbine assembly comprises a turbine combustor for mixing a compressed ambient gas with a recirculated low oxygen content gas flow and a fuel stream to form a combustible mixture for burning to form the recirculated low oxygen content gas flow. A turbine is arranged to be driven by the recirculated low oxygen content gas flow from the turbine combustor. The assembly includes a recirculation loop for recirculating the recirculated low oxygen content gas flow from the turbine to a turbine compressor and a gas flow extraction stream for extracting a portion of the recirculated low oxygen content gas flow for delivery to a carbon monoxide catalyst unit. A portion of the compressed ambient gas is directed to the carbon monoxide catalyst unit.
Abstract:
In one aspect, an exhaust diffuser for a gas turbine is disclosed. The exhaust diffuser may generally include an inner casing and an outer casing spaced radially apart from the inner casing so as to define a passage for receiving exhaust gases of the gas turbine. Additionally, the exhaust diffuser may include a fluid outlet configured to inject a fluid into the exhaust gases flowing through the passage.
Abstract:
A main air compressor delivers a compressed ambient gas flow with a compressed ambient gas flow rate to a turbine combustor. A fuel stream with a flow rate is delivered to the turbine combustor and mixed with the compressed ambient gas flow and an exhaust gas flow and burned with substantially stoichiometric combustion to form the exhaust gas flow and drive a turbine, thus operating the power plant at a first load. A portion of the exhaust gas flow is recirculated from the turbine to the turbine compressor and a portion is delivered to an exhaust path. The fuel stream flow rate and the compressed ambient gas flow rate are reduced, and substantially stoichiometric combustion is maintained and the power plant is operated at a second load. The fuel stream flow rate is further reduced and lean combustion is achieved and the power plant is operated at a third load.
Abstract:
Ambient air is compressed into a compressed ambient gas flow and delivered to a turbine combustor. At least one of an exhaust port, a bypass conduit, or an extraction conduit is opened to vent the power plant. A turbine shaft is rotated at an ignition speed and a fuel stream is delivered to the turbine combustor for mixing with the compressed ambient gas flow to form a combustible mixture. The combustible mixture is burned and forms a recirculated gas flow that drives the turbine. The recirculated gas flow is recirculated using the recirculation loop. The turbine is operated at a target operating speed and then reaches substantially stoichiometric combustion. At least a portion of the recirculated gas flow is extracted using an extraction conduit that is fluidly connected to the turbine compressor.
Abstract:
A turbine airfoil is disclosed. The airfoil includes one of a turbine shroud, liner, vane or blade, including an airfoil sidewall having a film-cooling hole that extends between an airfoil cooling circuit and an airfoil surface. The airfoil also includes an insert disposed in the film-cooling channel having a body. The body has a proximal end configured for disposition proximate the airfoil surface and a distal end. The body is also configured to define a passageway that extends between the distal end and proximal end upon disposition in the film-cooling hole.
Abstract:
A system includes a compression system fluidly coupled to a compartment to compress a first quantity of gas for storage in the compartment, the compression system including a compression path to convey the first quantity of gas; an expansion system fluidly coupled to the compartment to expand a second quantity of gas from the compartment, the expansion system including an expansion path to convey the second quantity of gas; a first path fluidly coupled to the compression path to convey the first quantity of gas to the compartment; a second path fluidly coupled to the expansion path to convey the second quantity of gas from the compartment to the expansion system; and a separation unit fluidly coupled to one of the first path, second path, compression path, and expansion path, wherein the separation unit removes a quantity of carbon dioxide from one of the first and second quantities of gas.