摘要:
A method for controlling a fuel metering device with a movable metering element, comprising at least two iterations of the following steps:
a detection (E1) of a possible change in the operating state among two position sensors of the metering element, if no change in the operating state is detected, a determination (E2_1) of the position of the metering element from an average of the measurements of the sensors or otherwise a determination (E2_2) from the non-defective sensor, a determination (E4) of a fuel flow rate setpoint, a conversion (E5) of the flow rate setpoint, a determination (E6) of a command of displacement of the metering element, a control (E7) of the position of the metering element, and
if a change in the operating state is detected, the calculation of an instantaneous fuel flow rate from the position of the metering element, and, during the second iteration of the method, the determination of the flow rate setpoint according to instantaneous flow rate to match the position setpoint to the position of the metering element.
摘要:
The invention relates to a method for detecting a fuel leakage in the fuel distribution system between a fuel control valve and at least one burner of a gas turbine during the operation of the gas turbine. In order to detect a fuel leakage, the fuel consumption is approximated in accordance with the mechanical power of the gas turbine, the fuel amount fed to the fuel distribution system is determined, and the leakage flow is determined from the difference between the fed fuel amount and the fuel consumption. The invention further relates to a gas turbine for performing such a method.
摘要:
A method using an inverse three-way valve model with feed-forward fuel flow control is provided for controlling liquid fuel flow in a turbine power generation system to achieve a bump-less driven watts (dwatt) power output during fuel mode transitions between passive mode and active mode operations of a three-way check valve that delivers liquid fuel to the turbine combustor nozzles. The method utilizes an inverse fluid flow model for a three-way check valve which is based upon a valve position surrogate for the three-way check valve to develop a calculated estimate of a fuel spike/dwatt oscillation likely to occur during mode transitions of the three-way check valve and to produce a feed-forward control used to modulate a fuel path bypass valve within the turbine fuel supply circulation system that provides the liquid fuel to the three-way valve during transfers of valve operation between passive and active mode operations.
摘要:
A control system is provided for performing staging control of a multi-stage combustor of a gas turbine engine. The fuel is fed to the combustor by a fuel supply system comprising: a plurality of fuel manifolds distributing fuel to respective stages of the combustor, a fuel metering valve operable to control the rate at which fuel passes to the fuel manifolds, and an actuating arrangement which splits the fuel flow from the fuel metering valve between the fuel manifolds. The control system includes a fuel pressure sensor arrangement which senses the fuel pressure at entry to the actuating arrangement, and/or in one or more of the fuel manifolds. The control system further includes a controller which repeatedly: calculates a fuel split between the fuel manifolds based on the sensed fuel pressure(s), and issues a command signal to the actuating arrangement to implement the calculated fuel pressure-based fuel split.
摘要:
A fuel supply apparatus is provided with a plurality of flow-rate regulating valves that regulate the flow rate of fuel flowing in a fuel supply line; a calculating section that calculates a required flow-rate coefficient on the basis of at least a fuel pressure in the fuel flow upstream of the flow-rate regulating valves, a pressure determined in advance as a fuel pressure downstream of the flow-rate regulating valves, and the flow rate of fuel to be supplied to one fuel nozzle among different kinds of fuel nozzles, the required flow-rate coefficient being the coefficient of the flow-rate regulating valve corresponding to the one fuel nozzle; and a valve control section that controls the degree-of-opening of the flow-rate regulating valve corresponding to the one fuel nozzle on the basis of the required flow-rate coefficient.
摘要:
A method of operating a gas turbine engine (20) comprising a variable geometry compressor (24), a variable geometry combustor (28), and a variable geometry turbine (30). The method comprises operating the variable geometry combustor (28) such that a corrected flow ωc through a combustion zone (46, 48) of the combustor (28) matches a predetermined value.
摘要:
A method of controlling an engine in which a fuel flow setpoint is determined is provided. The method includes implementing a steady speed regulation loop in which the fuel-flow-rate setpoint is determined as a function of a difference between a setpoint parameter that depends on the position of a control lever and an operating parameter of the engine; detecting an intended speed transient; and implementing a speed transient regulation loop in which the fuel-flow-rate setpoint is determined as a function of a difference between a speed of the engine and a speed setpoint varying over time with the speed trajectory as generated in predetermined manner, if a speed transient is detected.
摘要:
An auto-tune controller and tuning process implemented thereby for measuring and tuning the combustion dynamics and emissions of a GT engine, relative to predetermined upper limits, are provided. Initially, the tuning process includes monitoring the combustion dynamics of a plurality of combustors and emissions for a plurality of conditions. Upon determination that one or more of the conditions exceeds a predetermined upper limit, a fuel flow split to a fuel circuit on all of the combustors on the engine is adjusted by a predetermined amount. The control system continues to monitor the combustion dynamics and to recursively adjust the fuel flow split by the predetermined amount until the combustion dynamics and/or emissions are operating within a prescribed range of the GT engine.
摘要:
An engine fuel control system includes a fuel metering valve that controls the flow of fuel between supply and delivery lines which delivers fuel to engine burners. The fuel control system includes a fixed displacement main pump which receives fuel from a low pressure source and delivers the fuel at a first high pressure to the supply line, an augmenter pump which receives fuel from the low pressure source and delivers the fuel at a second high pressure to one or more fuel-pressure operated auxiliary engine devices, and a start valve which is actuated at low engine speeds to open a flow path which diverts fuel delivered by the augmenter pump away from the auxiliary engine devices to the supply line to augment the fuel delivered thereto by the main pump, the start valve being actuated at higher engine speeds to shut the flow path.
摘要:
An engine fuel control system is provided, including a supply line for the supply of fuel to a fuel metering valve which controls the flow of fuel to burners of an engine. Fuel is delivered at a first high pressure to the supply line by a pump arrangement. The engine fuel control system includes a restrictor located in the supply line for passage of the fuel delivered by the pump arrangement therethrough. The restrictor is configured such that fuel exiting the restrictor for onward supply to the fuel metering valve is at a second high pressure which is lower than the first high pressure. The engine fuel control system includes pressure limiting valves which actuate when the pressure difference between the first high and low pressure reaches a predetermined level to open a flow path for fuel on the supply line to by-pass the restrictor, thereby limiting the pressure difference.