Abstract:
Techniques are described for identifying a genetic variant in a test sample by comparing sequences reads obtained from the test sample to unique k-mers that are representative of a target genomic region. In one particular aspect, a method is described that includes generating a dictionary of a target genomic region having a set of unique k-mers by: accessing a sequence of the target genomic region, determining a set of k-mers for the target genomic region, comparing the set of k-mers for the target genomic region with one or more sets of k-mers for non-target genomic regions, and selecting the unique k-mers that do not appear in the one or more sets of k-mers for non-target genomic regions. The dictionary can then be used to identify a genetic variant in a test sample by comparing sequences reads obtained from the test sample to the unique k-mers in the dictionary.
Abstract:
Provided herein are methods, processes and apparatuses for non-invasive assessment of genetic variations that make use of nucleic acid fragments from circulating cell free nucleic acid. Also provided herein are methods for partitioning one or more genomic regions of a reference genome into a plurality of portions according to one or more features.
Abstract:
Provided herein are methods, processes and apparatuses for non-invasive assessment of genetic variations that make use of decision analyses. The decision analyses sometimes include segmentation analyses and/or odds ratio analyses.
Abstract:
Technology provided herein relates in part to non-invasive classification of one or more genetic copy number alterations (CNAs) for a test sample. Certain methods include sampling a quantification of sequence reads from parts of a genome, generating a confidence determination, and using the confidence determination to enhance classification. Technology provided herein is useful for classifying a genetic CNA for a sample as part of non-invasive pre-natal (NIPT) testing and oncology testing, for example.
Abstract:
Technology described herein pertains in part to diagnostic tests that make use of sequence reads generated by a sequencing process. In some embodiments, a component used to generate a chromosome representation can be based on counts of sequence reads not aligned to a reference genome.