Compositions and analysis of dephosphorylated oligoribonucleotides

    公开(公告)号:US12173368B2

    公开(公告)日:2024-12-24

    申请号:US18298291

    申请日:2023-04-10

    Abstract: The present disclosure relates, according to some embodiments, to compositions and analysis of RNA (e.g., dephosphorylated oligoribonucleotides) including, for example, natural and/or synthetic RNAs. A composition may comprise, for example, an endoribonuclease having an amino acid sequence that (i) corresponds to an amino acid sequence of a first species (e.g., Homo sapiens, Escherichia coli, Aspergillus oryzae, Momordica charantia, Pyrococcus furiosus, Cucumis sativus, and Sus scrofa) or (ii) is a non-naturally occurring sequence; and/or an RNA end repair enzyme having an amino acid sequence that (i) corresponds to an amino acid sequence of a species other than the first species (e.g., a bacterial species or a bacteriophage species) or (ii) is a non-naturally occurring sequence.

    KIT FOR GENOTYPING OF PLATELET AND NEUTROPHIL ANTIGENS AND GLYCOPROTEINS

    公开(公告)号:US20230235390A1

    公开(公告)日:2023-07-27

    申请号:US18156739

    申请日:2023-01-19

    Abstract: The present invention provides a mass spectrometry-based method and a kit for genotyping of platelet and neutrophil antigens and glycoproteins, which are used for genotyping of platelet-specific antigens, platelet CD36 glycoproteins and neutrophil antigens; by designing an optimal primer combination, problems such as homologous sequences and rich GC are overcome, moreover, by improving amplification reaction conditions and using nucleic acid mass spectrometry as a platform, 35 platelet-specific antigen polymorphic sites, 10 CD36 polymorphic sites and 8 neutrophil antigen polymorphic sites can be simultaneously detected in 2 reactions. The present invention has the characteristics of high specificity and sensitivity, and fast and high throughput, and can be used in clinic, scientific research, platelet donor routine screening, etc.

    Profiling chemically modified DNA/RNA units for disease and cancer diagnosis

    公开(公告)号:US11339441B2

    公开(公告)日:2022-05-24

    申请号:US15152996

    申请日:2016-05-12

    Abstract: The present invention relates to high-throughput methods comprising direct infusion electrospray ionization mass spectrometry (ESI-MS), multistep tandem mass spectrometry (MSn), consecutive reaction monitoring (CRM), ion mobility spectrometry mass spectrometry (IMS-MS), high-resolution MS, and IMS-MS, for genome-wide (whole cell or tissue) profiling of DNA and RNA nucleotides/nucleosides having a wide variety of variant structural modifications. In particular, these methods are contemplated for providing a specific profile of variant DNA and/or RNA chemically modified nucleic acids (i.e. structures) associated with specific medical conditions. Medical conditions may include, but are not limited to: cancer; including prostate, lung, uterus, larynx, ovary, breast, kidney, and many other types of cancers; specific stages of cancer; bacterial infections; viral infections; genetic and metabolic disorders; and any condition involving changes in DNA and/or RNA structural modifications.

    Genotyping by polymerase binding
    9.
    发明授权

    公开(公告)号:US10975424B2

    公开(公告)日:2021-04-13

    申请号:US16736139

    申请日:2020-01-07

    Applicant: Omniome, Inc.

    Abstract: A method for identifying target alleles, that includes steps of (a) forming a plurality of stabilized ternary complexes at a plurality of features on an array, wherein the stabilized ternary complexes each has a polymerase, a template nucleic acid having a target allele of a locus, a primer hybridized to the locus, and a next correct nucleotide having a cognate in the locus, wherein either (i) the primer is an allele-specific primer having a 3′ nucleotide that is a cognate nucleotide for the target allele, or (ii) the primer is a locus-specific primer and the next correct nucleotide hybridizes to the target allele; and (b) detecting stabilized ternary complexes at the features, thereby identifying the target alleles.

Patent Agency Ranking